Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. M là 1 điểm trên cung nhỏ AC sao cho cung AM > cung CM. Từ M kẻ ME vuông góc AC, MF vuông góc BC. P là trung điểm của AB, Q là trung điểm EF. a. Chứng minh tứ giác MECF nội tiếp b. C/m: BM.EF = BA.FM c. C/m: PM2 = PQ2 + QM2

Lê Thị Thục Hiền
24 tháng 5 2021 lúc 17:13

a)Có \(\widehat{MEC}=\widehat{MFC}\left(=90^0\right)\)

=>Tứ giác MECF nội tiếp

b)Có \(\widehat{AMB}=\widehat{ACB}\) (hai góc nội tiếp cùng chắn một cung)

\(\widehat{ACB}=\widehat{EMF}\) (hai góc nội tiếp cùng chắn một cung trong đt ngoại tiếp tứ giác MECF)

\(\Rightarrow\widehat{AMB}=\widehat{EMF}\)

Tương tự cũng có: \(\widehat{ABM}=\widehat{EFM}=\left(\widehat{ECM}\right)\)

Xét \(\Delta BMA\) và \(\Delta MEF\) có:

\(\widehat{AMB}=\widehat{EMF}\)

\(\widehat{ABM}=\widehat{EFM}\)

nên \(\Delta BMA\sim\Delta FME\left(g.g\right)\) 

\(\Rightarrow\dfrac{BM}{FM}=\dfrac{BA}{FE}\) \(\Leftrightarrow BM.EF=AB.FM\)

c) Gọi \(K=FE\cap AB\)

Có \(\widehat{MFK}=\widehat{ABM}\left(=\widehat{ECM}\right)\)

\(\Rightarrow\)Tứ giác BKMF nội tiếp

\(\Rightarrow\widehat{BKM}+\widehat{MFB}=180^0\)

\(\Rightarrow\widehat{BKM}=90^0\)

Có: \(\widehat{PAM}+\widehat{BCM}=180^0\) (vì BAMC nội tiếp do bốn đỉnh cùng thuộc đt tâm O)

\(\widehat{MCB}+\widehat{MEF}=180^0\) (vì EMCF nội tiếp)

\(\Rightarrow\widehat{PAM}=\widehat{MEQ}\) mà \(\dfrac{AP}{EQ}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}EF}=\dfrac{AB}{EF}=\dfrac{AM}{EM}\)

=> Tam giác APM và EQM đồng dạng (c.g.c)

\(\Rightarrow\widehat{APM}=\widehat{EQM}\) hay góc KPM= góc KQM

\(\Rightarrow\) Tứ giác KPQM nội tiếp

\(\Rightarrow\widehat{PKM}+\widehat{MQP}=180^0\)

\(\Rightarrow\widehat{MQP}=180^0-90^0=90^0\)

\(\Rightarrow\Delta MQP\) vuông tại Q

=> PM2=MQ2+PQ

(toi xỉu)


Các câu hỏi tương tự
Đào Thu  Hương
Xem chi tiết
hatsune miku
Xem chi tiết
Nguyễn Bá Thúc Hào
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Ái Minh
Xem chi tiết
Trần Thị Hậu
Xem chi tiết
DarkEvil HK Huy
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
yalu
Xem chi tiết