Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Đức Huy

Cho tam giác ABC có 3 góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt đường tròn (O) ở K( K khác A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. AM cắt đường tròn (O) tại I( I khác A). MD cắt BI tại N. Chứng minh 3 điểm C, K, N thẳng hàng.

giúp gấp !!!!!!

Đỗ Tuệ Lâm
4 tháng 2 2022 lúc 22:03

ta có: \(MC^2=MI.MA\)

\(\Rightarrow MD^2=MI.MA\) ( do tam giác MCD cân tại M)

\(\Rightarrow\dfrac{MD}{MA}=\dfrac{ MI}{MD}\) 

Xét tam giác MDI và tam giác MAD có :

\(\left\{{}\begin{matrix}DMAgócchung\\\dfrac{MD}{MA}=\dfrac{MI}{MD}\end{matrix}\right.\)

=> tam giác MDI đồng dạng tam giác MAD ( g -c)

=> góc MDI = góc MAD (1)

tứ giác DNIC nội tiếp => góc MDI = góc MCI (2)

từ 1 và 2 suy ra :góc NCI = góc HAD

mà góc MAD = góc KCI 

=>  góc NCI = góc KCI 

vậy 3 điểm C ; K ; N thẳng hàng ( đpcm)


Các câu hỏi tương tự
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Anh Thư Phạm
Xem chi tiết
My Dieu
Xem chi tiết
Nguyễn Demon
Xem chi tiết
Vân Anh
Xem chi tiết
Dương Như Quỳnh
Xem chi tiết