B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho▲ABC có 3 góc nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ AH vuông góc với BC. Từ H, kẻ HM ⊥ AB và HN ⊥ AC (H ∈ BC, M ∈ AB, N ∈ AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt (O;R) tại K. Chứng minh: a) Tứ giác AMHN nội tiếp b) AM.AB=AN.AC c) AE ⊥ MN d)C/M: AH=AK
cần gập ạ , giúp với
Cho▲ABC có 3 góc nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ AH vuông góc với BC. Từ H, kẻ HM ⊥ AB và HN ⊥ AC (H ∈ BC, M ∈ AB, N ∈ AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt (O;R) tại K. Chứng minh: a) Tứ giác AMHN nội tiếp b) AM.AB=AN.AC c) AE ⊥ MN d)C/M: AH=AK
cần gấp ạ , giúp câu d với ạ1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
Cho tam giác ABC nội tiếp đường tròn tâm O và AB<AC . Vẽ AH vuông góc với BC tại H . đường tròn đường kính AH lần lượt cắt AB ,AC tại I và K . Chứng minh ba đường thẳng AD , IK và BC đông qui
giúp em vs
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O,R) (AB<BC). Vẽ đường cao AH và đường kính AE. Tia AH cắt đường tròn tại D.
a. Chứng minh DE // BC và BECD là hình thang cân
b. Tính tổng HA^2 + HB^2 + HC^2 + HD^2 theo R
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. vễ AH vuông góc với BC,keHM,HN vuông góc với AB,AC.đường kính AE cắt đường tròn tại I, tria MN cắt (O,R). chứng minh AH=AK
Cho tam giác ABC nhọn (AB < AC) .Vẽ đường tròn (O; R) đường kính BC cắt hai cạnh AB, AC lần lượt tại E và D.Gọi H là giao điểm của BD và CE. a) Chứng minh: góc BEC = 90° và tứ giác AEHD nội tiếp b) Tia DE cắt đường thẳng BC tại S. Chứng minh: AH vuông góc BC và SE .SD=SB.SC c)Tia AH cắt BC tại F. Chứng minh: FEC =FAC và tứ giác OFED nội tiếp và OF.OS = R²
Cho tam giác ABC có 3 góc nhọn (AB<AC). Vẽ đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại N, M. Gọi H là giao điểm của BM vfa CN; AH cắt BC tại K.
a) Chứng minh tứ giác ANKC nội tiếp
b) Gọi I là giao điểm của NK và BM. Chứng minh: IH.NM=IN.MH
c) Chứng minh tứ giác NKOM nội tiếp