\(a,b,\) Ta có \(\left\{{}\begin{matrix}AN=BN\\AM=CM\end{matrix}\right.\Rightarrow MN\) là đtb \(\Delta ABC\Rightarrow MN//BC;MN=\dfrac{1}{2}BC\left(1\right)\)
Ta có \(\left\{{}\begin{matrix}BE=EG\\CG=GF\end{matrix}\right.\Rightarrow EF\) là đtb \(\Delta BGC\Rightarrow EF//BC;EF=\dfrac{1}{2}BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow EF=MN;EF//MN\)
\(c,d,\) Cmtt câu a,b, ta được \(NE,MF\) lần lượt là đtb \(\Delta AGB;\Delta AGC\)
\(\Rightarrow\left\{{}\begin{matrix}NE=\dfrac{1}{2}AG;NE//AG\\MF=\dfrac{1}{2}AG;MF//AG\end{matrix}\right.\Rightarrow NE=MF;NE//MF\)