a) Vì tam giác ABC là tam giác cân nên tia phân giác của góc B cũng là đường cao của tam giác ABC => góc BMC = góc BMA
Xét tam giác BMA và tam giác BMC, ta có:
Góc BMA = góc BMC ( cmt )
AB = CB ( gt )
Góc ABM = Góc CBM ( gt )
Vậy tam giác BMA = tam giác BMC ( cạnh huyền góc nhọn )
b) Theo câu a đã chứng minh, tia phân giác của góc B cũng là đường cao của tam giác ABC. Vậy góc BMC = góc BMA
c) Câu này chắc AB = 8cm mà bạn ghi nhầm AC = 8cm
Áp dụng đính lý Pi - ta - go vào tam giác ABM, ta có:
AM2 + BM2 = AB2
52 + BM2 = 82
BM2 = 82 - 52
BM2 = 39
BM gần = 6
a) Do tam giác ABC cân tại B và BM là đường phân giác của góc B nên
BM là đường cao,đường trung tuyến,và đường trung trực của,đường cao của tam giác ABC(tính chất tam giác cân)
Xét tam giác BMA và tam giác BMC có
BA=BC(vì tam giác ABC cân tại B)
Góc BMA=góc BMC=90 độ(vì BM là đường cao của tam giác ABC)
Cạnh chung BM
Suy ra tam giác BMA= tam giác BMC(cạnh huyền-cạnh góc vuông)
b) Vì BM là đường cao của tam giác ABC nên
Góc BMA=BMC=90 độ
c) Do BM là đường trung trực của tam giác ABC nên(cmt ở câu a)
Nên AM=CM=8:2=4 CM
Áp dụng định lí Py-ta-go vào tam giác vuông ABM có
AB^2=AM^2+BM^2
Hay 5^2+BM^2=8^2
25+BM^2=64
BM^2=64-25=39
BM= căn bậc hai của 39=xấp xỉ 6
Vậy BM=~6