Lời giải:
Tam giác $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến.
$\Rightarrow H$ là trung điểm $BC$
Do đó:
$\frac{1}{CB^2}+\frac{1}{4AH^2}=\frac{1}{(2BH)^2}+\frac{1}{4AH^2}=\frac{1}{4}(\frac{1}{AH^2}+\frac{1}{BH^2})$
$=\frac{1}{4}.\frac{1}{EH^2}$ (áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABH$)
$=\frac{1}{(2EH)^2}(1)$
Lại có:
$EH\perp AB, CK\perp AB$ nên $EH\parallel CK$
$\Rightarrow \frac{EH}{KC}=\frac{BH}{BC}=\frac{1}{2}$
$\Rightarrow 2EH=KC(2)$
Từ $(1); (2)\Rightarrow \frac{1}{CB^2}+\frac{1}{4AH^2}=\frac{1}{(2EH)^2}=\frac{1}{CK^2}$ (đpcm)