Cho tam giác ABC cân tại A,đ/cao AH,kẻ HD vuông góc với AC,nối BD. Gọi M là trung điểm HD, qua M kẻ đường song song với BC cắt BD tại E,cắt CD tại F.
a)C/m ME=MF.
b) C/m AM vuông góc với HF ?
Cho tam giác ABC cân tại A và đường cao AH. Vẽ HD vuông góc với AC. Nối BD. Từ M là trung điểm của HD vẽ dg thẳng // với BC cắt BD tại E,CD tại F.
CM a)ME=MF
b)AM vuông góc với HF
cho tam giác ABC cân tại A(góc A nhọn) Vẽ AH vuông góc BC(H thuộc BC).
a) C/m:Tam giác AHB = tam giác AHC
b)Gọi M là trung điểm CH, từ M vẽ đường thẳng vuông góc BC cà cắt AC tại D C/m:Tam giác DMC = tam giác DMH và Hd song song AB
c)BD cắt AH tại G. C/m G là trọng tâm tam giác ABC và 2/3(AH +BD)>AB
Làm hộ mk ạ
Cho tam giác ABC cân tại A. Dựng đường cao AH. Dựng HD vuông góc AC và CM // BD (M thuộc AC). a) Chứng minh rằng M là trung điểm của CD. b) Gọi N là trung điểm HD. Tia MN cắt AH tại E. Chứng minh rằng ME vuông góc AH. c) Chứng minh rằng AN vuông góc BD. (Không sử dụng công thức đường trung bình)
Cho ∆ABC cân tại A ( góc A nhọn , AB>BC ) . Gọi M là trung điểm của BC. a) Chứng minh: ∆ABM=∆AMC. b) Kẻ MD vuông góc với AB tại D , kẻ ME vuông góc với AC tại E . Chứng minh : ∆EDM là tam giác cân. c) Qua M kẻ đường thẳng song song với AB , cắt cạnh AC tại F . Chứng minh : F là trung điểm của AC Giải giúp mình ạ
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
cho tam giác nhọn ABC cân tại A có AB=13cm, BC=10cm. kẻ AH vuông góc với BC tại H
a) chứng minh tam giác ABH = tam giác ACH
b) gọi M là trung điểm của AC, G là giao điểm của BM và AH. tính AG
c) kẻ HE vuông góc với AB,HF vuông góc với AC (E thuộc AB, F thuộc AC. tia EH cắt AC tại I và tia FH cắt AB tại K. chứng minh AH là đường trung trực của đoạn thẳng IK.
d) từ H kẻ HD song song với AC (D thuộc AB). chứng minh ba điểm C, G, D thẳng hàng
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác ADE cân.
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF.
c) Chứng minh BD = CE.