(Bạn tự vẽ hình nhé)
a/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC => AH là đường cao thứ 3 (=> AH vuông góc BC)
Vì tam giác ABC cân tại A => AH vừa là đường cao vừa là phân giác => góc EAH = góc DAH
Xét tam giác AEH và tam giác AHD có:
góc EAH = góc DAH (cmt)
AH: chung
góc AEH = góc ADH = 90 độ (gt)
=> tam giác AEH = tam giác ADH (g.c.g)
=> AD = AE (2 cạnh t.ứng)
b/ Vì tam giác ABC cân tại A nên AH cũng là đường trung tuyến
=> AH đi qua trung điểm BC
c/ Ta có: AE = AD (cmt)
EH = DH (vì tam giác AEH = tam giác ADH)
=> AH là đường trung trực của ED
=> AH vuông góc ED (tới đây thôi được r` dù còn 1 tính chất đường trung trực nữa. Nhưng nếu suy ra phải thêm điểm cơ)
Mà: AH vuông góc BC (gt)
=> DE // BC