a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
=>AM vuông góc DE
ΔADE cân tại A
có AM là đường cao
nên AM là phân giác của góc DAE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
=>AM vuông góc DE
ΔADE cân tại A
có AM là đường cao
nên AM là phân giác của góc DAE
Cho tam giá ABC cân tại A trung tuyến AM trên tia đối của BC lấy D trên tia đối của CB lấy E sao cho BD=CE a) c/m tam giác ADE cân tại A b) AM là phân giác góc DAE
Cho tam giác ABC cân tại A. Đường trung tuyến AM. Trên tia đối của tia BC lấy D, trên tia đối CB lấy E sao cho BD = CE
a: Tam giác ADE cân tại A
b: AM là tia phân giác
c: kẻ BH vuông góc AD ,CK vuông góc AE .Chứng minh tam giác AHB=tam giác AKC
d:CM: HK// DE
e: gọi N là giao điểm của HB và CK .Chứng minh AB vuông góc ID
f:CM: HB,AM,CK cùng đi qua điểm I
cho tam giác ABC cân tại A . Trên tia đối của tia BC và CB lấy theo thứ tự hai điểm D,E sao cho BD = CE
a) chứng minh tam giác ADE cân.
b) Gọi M là trung điểm BC . Chứng minh: AM là tia phân giác của góc DAE
Cho tam giác ABC cân tại A, trung tuyến AM. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE.
a) Chứng minh tam giác ADE cân tại A
b) Chứng minh AM là tia phân giác D A E ^ .
c) Kẻ B H ⊥ A D , C K ⊥ A E với H ∈ A D , K ∈ A E . Chứng minh D B H ^ = E C K ^
d) Gọi N là giao điểm của HB và KC. Chứng minh ba điểm A, M, N thẳng hàng.
Cho tam giác ABC cân tại A .Trên tia đối của các tia BC và CB thứ tự lấy các điểm D và E sao cho BD=CE 1) Chứng minh tam giác ADE là tam giác cân 2)Gọi M là trung điểm của BC . Chứng minh AM là tia phân giác của góc DAE 3) Từ B và C kẻ BH và CK thứ tự vuông góc với AD và AE. Chứng minh BH=CK cùng đi qua một điểm
Cho tam giác ABC cân tại A. Đường trung tuyến AM. Trên tia đối của tia BC lấy D, trên tia đối CB lấy E sao cho BD = CE
a: Tam giác ADE cân tại A
b: AM là tia phân giác
c: kẻ BH vuông góc AD ,CK vuông góc AE .Chứng minh tam giác AHB=tam giác AKC
d:CM: HK// DE
e: gọi N là giao điểm của HB và CK .Chứng minh AB vuông góc ID
f:CM: HB,AM,CK cùng đi qua điểm I
Cho tam giác ABC cân tại A. Đường trung tuyến AM. Trên tia đối của tia BC lấy D, trên tia đối CB lấy E sao cho BD = CE
a: Tam giác ADE cân tại A
b: AM là tia phân giác
c: kẻ BH vuông góc AD ,CK vuông góc AE .Chứng minh tam giác AHB=tam giác AKC
d:CM: HK// DE
e: gọi N là giao điểm của HB và CK .Chứng minh AB vuông góc ID
f:CM: HB,AM,CK cùng đi qua điểm I
help me
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy M, trên tia đối của CB lấy N sao cho BM = BN. Vẽ BD vuông góc với AM tại D, CE vuông góc với AN tại E.
a) Chứng minh rằng tam giác AMN cân.
b) Chứng minh rằng BD = CE.
c) Gọi K là giao điểm của DB và EC. Chứng minh tam giác ADK = tam giác AEK.
d) Chứng minh rằng KD + KE < 2KA.
cho tam giác ABC cân tại A trên tia đối của tia BC và CB lấy điểm D và điểm E sao cho BD=CE
a,chứng minh :tam giác ADE cân
b,gọi M là trung điể của BC .chứng minh AM là tia phân giác của góc DAE
c,từ Bvà C kẻ BH và CK theo thứ tự vuông góc AD và AE .chứng minh B=CK
d,chứng minh:ba đường thẳng AM,BH,CK gặp nhau tại 1 điểm