Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hue bui

Cho tam giác ABC cân tại A. Trên tia đối của AB và AC, kẻ D và E sao cho BD = CE a) chứng minh tam giác ADE cân, DE//BC b) Từ D kẻ DM vuông góc với BC, từ E kẻ EN vuông góc với BC. Cm DM=EN c) chứng minh tam giác AMN là tam giác cân ( giải hộ mik nhanh nha)

 

Nguyễn Huy Tú
7 tháng 2 2022 lúc 14:50

a, Ta có : AD = AB + BD ; AE = AC + CE

mà AB = AC (gt); BD = CE (gt) 

=> AD = AE 

Vậy tam giác ADE cân tại A

Ta có : \(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)do AB = AC; AD = AE(cmt) 

=> DE // BC ( Ta lét đảo ) 

b, Vì ^ABC = ^MDB ( đối đỉnh ) 

^ACB = ^NCE ( đối đỉnh ) 

mà ^ABC = ^ACB ( tam giác ABC cân tại A ) 

=> ^MDB = ^NCE 

Xét tam giác DMB và tam giác ENC có : 

BD = EC (cmt) 

^MDB = ^NCE ( cmt ) 

Vậy tam giác DMB = tam giác ENC ( ch - gn ) 

=> DM = EN ( 2 cạnh tương ứng ) 

=> BM = NC ( 2 cạnh tương ứng ) 

c, Ta có : ^ABM = ^MBC - ^ABC 

^ACN = ^NCM = ^ACB 

=> ^ABM = ^ACN 

Xét tam giác ABM và tam giác ACN có : 

AB = AC (gt) 

^ABM = ^ACN (cmt) 

BM = CN (cmt) 

Vậy tam giác ABM = tam giác ACN ( c.g.c ) 

=> ^AMB = ^ANC ( 2 góc tương ứng ) 

Xét tam giác AMN có : ^AMB = ^ANC (cmt) 

Vậy tam giác AMN cân tại A

Ami Mizuno
7 tháng 2 2022 lúc 14:51

Bạn vẽ hình giúp mình nha

a. Tam giác ABC cân tại A nên AB=AC

Ta có: AE=AC+CE, AD=AB+BD 

Mà AC=AB, CE=BD

\(\Rightarrow AE=AD\) \(\Rightarrow\Delta ADE\) cân tại A

Xét \(\Delta ADE\) có: \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)

Áp dụng định lí Ta-let đảo \(\Rightarrow BC//DE\) (đpcm)

Xét \(\Delta BDM\) vuông tại M và \(\Delta CEN\) vuông tại N có:

\(\left\{{}\begin{matrix}BD=CE\\\widehat{MBD}=\widehat{NEC}\left(cùng.bằng.\widehat{ABC}\right)\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta BDM\)=\(\Delta CEN\) \(\Rightarrow\)DM=EN (đpcm)

Kẻ \(AH\perp BC\) \(\left(H\in BC\right)\)

Ta có \(\Delta ABC\) cân tại A nên AH vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow BH=CH\) 

Mà MB=CN (\(\Delta BDM\)=\(\Delta CEN\)\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A

 

 

hue bui
7 tháng 2 2022 lúc 14:51

Có ai giải giúp mik kobucminh


Các câu hỏi tương tự
TH ND
Xem chi tiết
trâm lê
Xem chi tiết
Thaomy
Xem chi tiết
Từ Khánh Hưng
Xem chi tiết
nguyễn duy nam
Xem chi tiết
minhduong2007
Xem chi tiết
Tạ Tùng
Xem chi tiết
Trần Linh Trang
Xem chi tiết
Nguyễn Thảo Ly
Xem chi tiết