a: XétΔADC và ΔAEB có
AD=AE
góc A chung
AC=AB
=>ΔADC=ΔAEB
b: Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDCB=ΔEBC
=>góc KBC=góc KCB
=>ΔKBC cân tại K
a: XétΔADC và ΔAEB có
AD=AE
góc A chung
AC=AB
=>ΔADC=ΔAEB
b: Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDCB=ΔEBC
=>góc KBC=góc KCB
=>ΔKBC cân tại K
Bài 2. Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD = AE. a) Chứng minh rằng: BE = CD b) Chứng minh rằng: góc ABE bằng góc ACD c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao? d) Gọi I là trung điểm BC. Chứng minh A, K, I thẳng hàng
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điêm E sao cho AD = AE
a, Chứng minh rằng Be= Cd
b, Chứng minh ABE^ = ACE^
c, gọi K là giao điểm của BE là CD. Tam giác KBC là tam giác gì ? Vì sao?
d, Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm
Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. Tam giác KBD bằng tam giác KCE
c. AK là phân giác của góc A
d. Tam giác KBC cân
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE.
a) Chứng minh BE = CD.
b) Gọi K là giao điểm của BE và CD. Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác góc A.
d) Kéo dài AK cắt BC tại H. Cho AB =5 cm, BC = 6 cm. Tính độ dài AH.
Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. Tam giác KBD bằng tam giác KCE
c. AK là phân giác của góc A
d. Tam giác KBC cân
Cho tam giác ABC cân tại A,trên cạnh AB và AC lần lượt lấy điểm D và E sao cho AD=AE.Gọi K là giao điểm của CD và BE.
a,Cm: tam giác ADC= tam giác AEB
b,Cm:tam giác KBC cân
c,trên tia đối của tia CB lấy điểm M sao cho CM=CB
Tính góc ABC nếu BAC=2*góc MAC
Cho tam giác ABC cân tại A (góc A<90 độ) . Trên cạnh AB và cạnh AC lần lượt lấy điểm D và E sao cho AD = AE.
a/ Chứng minh: tam giác ADC =tam giác AEB
b/ Gọi F là giao điểm của BE và CD. Chứng minh: tam giác FBC là tam giác cân
c/ Chứng minh: AF là tia phân giác của BC và AF đi qua trung điểm M của BC.
d/ Qua C vẽ đường thẳng song song với AB. Đường thẳng này cắt tia DM tại K. Chứng minh: CK = CE
Bài 20. Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. Tam giác KBD bằng tam giác KCE
c. AK là phân giác của góc A
d. Tam giác KBC cân