a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
a: Xét ΔANB và ΔAMC có
AN=AM
\(\hat{NAB}\) chung
AB=AC
Do đó: ΔANB=ΔAMC
b: Xét ΔABC có \(\frac{AN}{AC}=\frac{AM}{AB}\)
nên MN//BC
c: AN+NC=AC
AM+MB=AB
mà AN=AM và AC=AB
nên NC=MB
Xét ΔMBC và ΔNCB có
MB=NC
\(\hat{MBC}=\hat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\hat{MCB}=\hat{NBC}\)
=>\(\hat{IBC}=\hat{ICB}\)
=>IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Ta có: DB=DC
=>D nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,D thẳng hàng