b: Kẻ EM//CF
=>góc BME=góc BCA=góc EBM
=>ΔEMB cân tại E
=>EM=EB=CF
mà EM//CF
nên EMFC là hình bình hành
=>I là trung điểm của EF
=>IE=IF
b: Kẻ EM//CF
=>góc BME=góc BCA=góc EBM
=>ΔEMB cân tại E
=>EM=EB=CF
mà EM//CF
nên EMFC là hình bình hành
=>I là trung điểm của EF
=>IE=IF
Cho tam giác ABC cân tại A nội tiếp trong đường tròn tâm O .Trên cạnh AB laá điểm E và trên cạnh AC kéo dài về phía C lấy F sao cho BE = CF .Vẽ đường kính AA’ của (O).
Chứng minh tam giác A’EF cân và tứ giác AEA’F nôi tiếp
Gọi I là giao điểm của EF và BC .Chứng minh IE =IF
thank you!
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh : AD vuông góc BC
b) Chứng minh EFDO là tứ giác nội tiếp
c) Trên tia đối của tia DE lấy điểm L sao cho DL = DF. Tính số đo góc BLC
d) Gọi R, S lần lượt là hình chiếu của B,C lên EF. Chứng minh DE + DF = RS và AH.AD=AE.AC
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường cao AD, BE cắt nhau tại H. Kéo dài BE cắt đường tròn (O) tại F.
1)Chứng minh tứ giác CDHE là tứ giác nội tiếp
2) Kéo dài AD cắt (O) tại N. Chứng minh ∆AHF cân và C là điểm chính giữa cung NF
3) Gọi M là trung điểm của cạnh AB. Chứng minh ME là tiếp tuyến của đường tròn ngoại tiếp ∆CDE
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB < AC), đường tròn tâm M đường kính BC cắt AB, AC lần lượt tại F và E.Gọi H là giao điểm BE và CF, D là giao điểm của AH và BC.Vẽ đường kính AK của (O). a) Chứng minh AD là đường cao của tam giác ABC và tứ giác BFHD nội tiếp đường tròn. b) Đường thẳng EF cắt đường thẳng BC tại S, cắt (O) tại P và Q (nằm giữa S và Q). Chứng minh SP.SQ = SF.SE c) Gọi L là điểm đối xứng của C qua AK, AL cắt EF tại N.Chứng minh L thuộc (O) và DHNL nội tiếp.
giúp mình giải câu c. tứ giác DHNL nội tiếp
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn tâm O bán kính R. Vẽ các đường cao AD, BE, CF. Vẽ đường kính AK của đường tròn tâm O.
a) Chứng minh: AB.AC=AD.AK và SABC=\(\frac{AB.BC.CA}{4R}\)
b) Chứng minh OA vuông góc với EF
c) Vẽ đường tròn (I) đi qua B, C và tiếp xúc với AB tại B. Gọi M là giao điểm của cạnh AC với đường tròn (I), N là giao điểm của đường thẳng AD và đường thẳng BK. Chứng minh rằng 4 điểm A, B ,N, M thuộc một đường tròn.
Bài 4:
Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác sao cho CD=CA. M là một điểm trên cạnh AB sao cho ˆBDM=\(\frac{1}{2}\)ˆACD. N là giao điểm của MD và đường cao AH củaΔABCΔABC. Chứng minh DM=DN.
cho đường tròn tam O nội tiếp tam giác ABC (AB<AC) tiếp xúc với các cạnh BC,CA,AB tương ứng tại D,E,F.Đườn tròn tâm O' bàng tiếp trong góc BAC của tam giác ABC tiếp xúc với cạnh BC và phần kéo dài của các cạnh AB,AC tương ứng tại các điểm P,M,N.
a)chứng minh BP=CD
b)trên đường thawngrMN lấy các điển I,K sao cho CK//AB,BI//AC. chứng minh các tứ giác BICE,BKCF là hình thang cân
c)gọi (S) là đường tròn đi qua ba điểm I,K,P.chứng minh(S) tiếp xúc với các đường thẳng BC,BI,CK
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC vuông ở đỉnh A. Trên cạnh AC lấy điểm M (khác với A và C). Vẽ đường tròn (O) đường kính MC. Gọi N là giao điểm thứ 2 của cạnh BC với đường tròn (O). Nối BM và kéo dài, cắt đường tròn (O) tại điểm thứ hai là P. 1) Chứng minh rằng tứ giác AMNB là tứ giác nội tiếp. 2) Chứng minh rằng hai tam giác ABP và MNP đòng dạng. 3) Đường thẳng AP cắt đường tòn (O) tại điểm thứ 2 là D (khác P). Đường thẳng ND cắt các đường thẳng AC và PC lần lượt tại E và G. Chứng minh rằng CM.CE = CP.CG