a,xét tam giác DMB và DCA có:
góc BDM=ADC
góc BMD=ACD(góc nt cug chắn cug AB)
=>2 tam giác này đồng dạng vs nhau
a, xé tam giác MBD cà MAC có:
góc MBD=MAC( góc nt cug chắn cung MC)
góc BMA=AMC(chắn 2 cug bằng nhau)
=>2 tam giác này đồng dạng vs nhau
a,xét tam giác DMB và DCA có:
góc BDM=ADC
góc BMD=ACD(góc nt cug chắn cug AB)
=>2 tam giác này đồng dạng vs nhau
a, xé tam giác MBD cà MAC có:
góc MBD=MAC( góc nt cug chắn cung MC)
góc BMA=AMC(chắn 2 cug bằng nhau)
=>2 tam giác này đồng dạng vs nhau
Cho tam giác ABC cân tại A nội tiếp (O,R). M là điểm di động trên cung nhỏ BC . D là giao điểm của AM và BC.
a, Chứng minh tam giác MBD đồng dạng với tam giác MAC
b, (MB+MC)/MA=BC/AB
c, Xác định vị trí của M để MA+MB+MC đạt giá trị lớn nhất
Cho tam giác nội tiếp đường trong (O) và M là một điểm trên cung nhỏ BC. Trên đoạn MA lấy điểm D sao cho MD=MB
a) Hỏi tam giác MDB là tam giác gì
b) so sánh hai tam giác BDA và BMC
c) Chứng minh MA=MB+MC
d) tìm vị trí của M để MA + MB +MC lớn nhất
Cho tam giác ABC đều nội tiếp đường tròn (O;R). M là điểm trên cung nhỏ BC, trên tia MA lấy I sao cho MB=MI. Xác định vị trí M để MB+MC lớn nhất
cho tam giác ABC đều nội tiếp đường tròn tâm O lấy M trên cung nhỏ BC trên dây AM lấy điểm D sao cho MD= MB
a) C/m tam giác MBD đều
b) C/m MB + MC = AM
c) C/m 4 điểm A, O, B, D thuộc 1 đường tròn
d) Xác định vị trí M trên cung BC nhỏ để MB+ MC lớn nhất.
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC.Trên MA lấy điểm D sao cho MD = MB
a. Hỏi tam giác MBD là tam giác gì?
b. So sánh hai tam giác BDA và BMC
c. Chứng minh rằng MA =MB + MC
d. CMR \(\frac{1}{MN}=\frac{1}{MB}+\frac{1}{MC}\)( N là giao điểm của AM và BC )
Cho \(\Delta\)đều ABC nội tiếp đường tròn (O). Gọi M là 1 điểm trên cung nhỏ BC. Trên tia MA lấy D sao cho MA=MD.
a) Cm MA là phân giác của góc BMC
b) \(\Delta\)BMD là tam giác gì vì sao
c) Cm MA=MB+MC
d)Xác định vị trí của M trên cung nhỏ BC để MA+MB+MC lớn nhất
Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Gọi M là một điểm bất kì thuộc cung BC.
a) Chứng minh rằng MA = MB + MC
b) Gọi D là giao điểm của MA và BC. Chứng minh rằng \(\frac{MD}{MB}+\frac{MD}{MC}=1\)
c) Tính tổng MA^2 + MB^2 MC ^2 theo R.
Cho tam giác ABC đều ngoại tiếp (O), M là một điểm bất kì trên cung nhỏ BC, AM giao BC tại D. Chứng minh rằng:
a, MA=MB+MC
b, MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ADC
c, Khi điểm M di chuyển trên cung nhỏ BC thì tổng 2 bán kính của 2 đường tròn ngoại tiếp tam giác ABD và ACD không đổi
cho tam giác ABC nội tiếp đường tròn tâm O bán kính R có AB=\(R\sqrt{3}\) Và Cung CA = Cung CB . M là điểm bất kỳ trên cung nhỏ AB .
a) CM : MA+MB=MC
b) Tìm vị trí nhỏ nhất của M trên cung nhỏ BC để MA+MB là lớn nhất