Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tươi Lưu

Cho tam giác ABC cân tại A lấy điểm M trên tia đối BC lấy điểm N trên tia đối CB sao cho BM bằng CN a, góc ABM bằng góc CAN b,tam giác AMN cân c,so sánh AM,AC d, trên tia đối của tia MA lấy điểm I sao cho MI bằng AM. Nếu MB bằng BC bằng CN thì AB đi qua trung điểm của IN c,so sánh AM, AC

a: Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

b: 

Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

c: Ta có: ΔABC cân tại A

=>\(\widehat{ABC}\) nhọn

=>\(\widehat{ABM}=180^0-\widehat{ABC}>90^0\)

Xét ΔABM có \(\widehat{ABM}>90^0\)

mà AM là cạnh đối diện của góc ABM

nên AM là cạnh lớn nhất trong ΔABM

=>AM>AB

mà AB=AC

nên AM>AC

 


Các câu hỏi tương tự
Gin Pu
Xem chi tiết
tran dinh danh
Xem chi tiết
nguyễn thị hoa lan
Xem chi tiết
Nguyễn Phú Đức Minh
Xem chi tiết
Trần Phương Na
Xem chi tiết
Trần Lê Trung Nhân
Xem chi tiết
Legend
Xem chi tiết
Nguyễn Khánh
Xem chi tiết
Trân Liễu
Xem chi tiết