Xét ΔDAC và ΔDEB có
DA=DC
\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)
DC=DB
Do đó: ΔDAC=ΔDEB
=>\(\widehat{DAC}=\widehat{DEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
Xét ΔDAC và ΔDEB có
DA=DC
\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)
DC=DB
Do đó: ΔDAC=ΔDEB
=>\(\widehat{DAC}=\widehat{DEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy D, trên tia đối của tia AC lấy E. Sao cho AD = AE
a) C/m: DE // BC
b) Gọi M là trung điểm của BC . MA cắt DE tại Q
C/m: Q là trung điểm DE
c) Gọi H là trung điểm AD, K là trung điểm AE
C/m: Tam giác QHK là tam giác cân
Cho tam giác ABC vuông tại B có AB < AC . Trên tia đối của tia BA lấy điểm D sao cho BD = BA, trên cạnh BC lấy điểm E sao cho BE=BC.
a/ Chứng minh AEAD cân.
b/ Tia AE cắt DC tại K. Chứng minh K là trung điểm của đoạn thẳng DC .
c/ Chứng minh AD<4EK.
1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD
a) Chứng minh tam giác OAD = tam giác OCB
b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB
c) Chứng minh rằng OM là tia phân giác của góc xOy
2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh tam giác ABM = tam giác ACM
b) Chứng minh AM vuông góc với BC.
c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB
d) Chứng minh EF = BC
3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B
a) Chứng minh rằng: EA = EC và EB = ED
b) Chứng minh rằng: C, E, B thẳng hàng
c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN
4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng
a) Tam giác DBC = tam giác DAM
b) AM//BC
c) M, A, N thẳng hàng
cho tam giác ABC vuông tại A AB= 12cm, AC= 9cm.
a) tính độ dài BC và so sánh các góc của tam giác ABC
b) trên tia đối của tia CA lấy điểm D sao cho C là trung điểm của đoạn thẳng AD . Qua C dựng đường vuông góc với AD cắt đoạn thẳng BD tại E. chứng minh tam giác EAD cân
c) chứng minh : E là trung điểm đoạn BD
d) gọi G là giao điểm của AE và BC . tính độ dài đoạn BG
C1:Cho tam giác ABC.Kẻ AH vuông góc với BC .Trên tia đối của tia AH lấy D sao cho AH=AD.Gọi E là trung điểm của HC , F là gia điểm của AC và DE.Chứng minh: a, AF=1/3 AC b, H,F và trung điểm của M của DC thẳng hàng ; c, HF=1/3 CD. |
Cho tam giác ABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC.
a. Chứng minh rằng tam giác ABM = tam giác ACM và AM vuông góc với BC
b. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. CHỨNG minh tam giác AMD = tam giác AME
c. Gọi N là trung điểm của đoạn thẳng BD. Trên tia đối của tia NM lấy điểm K sao cho NK = NM. Chứng minh ba điểm D, E ,K thẳng hàng
CHO TAM GIÁC ABC CÂN TẠI A. TRÊN AB LẤY D . TRÊN TIA ĐỐI AC LẤY E SAO CHO BD=CE. ĐƯỜNG THẲNG QUA D SONG SONG AC CẮT BC TẠI F . GỌI I LÀ GIAO ĐIỂM CỦA DE VÀ BC . CHỨNG MINH A, TAM GIÁC FBD CÂN
B, I LÀ TRUNG ĐIỂM DE
C, AD+AE KHÔNG ĐỔI KHI D, E THAY ĐỔI