Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Tấn Phát

Cho tam giác ABC cân tại A ,Kẻ phân giác của góc A cắt BC tại M

a,CM △ABM = △ ACM

b, Qua M kẻ song song với AC cắt AB tại K .CM KA = KM và K là trung điểm của AB

c, Gọi H là giao điểm của AM và CK, BH cắt AC tại E. CM AB + BC > 2 BE

Giúp mình với ,mình đang cần gấp!

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: MK//AC

=>\(\widehat{KMA}=\widehat{MAC}\)(hai góc so le trong)

mà \(\widehat{MAC}=\widehat{KAM}\)(AM là phân giác của góc BAC)

nên \(\widehat{KAM}=\widehat{KMA}\)

=>KA=KM

Ta có: KM//AC

=>\(\widehat{KMB}=\widehat{ACB}\)(hai góc đồng vị)

mà \(\widehat{ACB}=\widehat{KBM}\)(ΔABC cân tại A)

nên \(\widehat{KMB}=\widehat{KBM}\)

=>KB=KM

mà KM=KA

nên KB=KA

=>K là trung điểm của AB

c: ΔABM=ΔACM

=>BM=CM

=>M là trung điểm của BC

Xét ΔABC có

AM,CK là các đường trung tuyến

AM cắt CK tại H

Do đó: H là trọng tâm của ΔABC

Xét ΔABC có

H là trọng tâm

BH cắt AC tại E

Do đó: E là trung điểm của AC

Trên tia đối của tia EB, lấy N sao cho EB=EN

Xét ΔEBC và ΔENA có

EB=EN

\(\widehat{BEC}=\widehat{NEA}\)

EC=EA

Do đó: ΔEBC=ΔENA

=>BC=NA

Xét ΔABN có AB+AN>BN

mà AN=BC và BN=2BE

nên BA+BC>2BE

NGUYỄN PHÚC HUY
5 tháng 7 lúc 9:03

a: Xét ΔAMB và ΔAMC có

AM chung

góc MAB=góc MAC

AB=AC
=>ΔAMB=ΔAMC

b: Xét ΔMAB và ΔMNC có

góc AMB=góc NMC

MB=MC

góc ABM=góc NCM

=>ΔMAB=ΔMNC

=>AB=NC

c: ΔMAB=ΔMNC

=>MA=MN

=>AM=1/2AN

 


Các câu hỏi tương tự
Nguyễn
Xem chi tiết
nguyen thi thu thao
Xem chi tiết
khanh hoa bui
Xem chi tiết
HVTC Nguyen Thi Chien
Xem chi tiết
Thu Huong Nguyen
Xem chi tiết
QT Gamers
Xem chi tiết
ANH HEO
Xem chi tiết
Nguyễn Thị Linh Nhi
Xem chi tiết
uchiha itachi
Xem chi tiết
Nguyễn Quốc Anh
Xem chi tiết