a ) Ta có ΔABC cân tại A .
\(\Rightarrow\) AB = AC
Có AH là đường cao
\(\Rightarrow\) AH đồng thời là trung tuyến
\(\Rightarrow\) H là trung điểm của BC
Xét ΔAHB và ΔAHC có :
AB = AC
Góc AHB = Góc AHC = 90
BH = HC
\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )
b ) Xét ΔAHB vuông tại H có .
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)
c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .
\(\Rightarrow\) ΔABM cân tại B
d ) Ta có : BAM cân tại B
\(\Rightarrow\) Góc BAM = Góc BMA
Xét ΔBAC cân tại A có HA là trung tuyến
\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .
\(\Rightarrow\) Góc BAH = Góc CAH
\(\Rightarrow\) Góc BMA = Góc HAC
Mà 2 góc này ở vị trí so le trong của BM và AC .
\(\Rightarrow\) BM // AC
a) ( Cái này có khá nhiều cách chứng minh nhé . )
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )
b) => HB = HC ( hai cạnh tương ứng )
Mà BC = 8cm
=> HB = HC = BC/2 = 8/2 = 4cm
Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :
AB2 = AH2 + HB2
52 = AH2 + 42
=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)
c) HM là tia đối của HA
=> ^AHB + ^BHM = 1800
=> 900 + ^BHM = 1800
=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H
Xét tam giác vuông AHB và tam giác vuông BHM ta có :
HM = HA ( gt )
^BHM = ^AHB ( cmt )
HB chung
=> Tam giác AHB = tam giác BHM ( c.g.c )
=> BM = BA ( hai cạnh tương ứng )
Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B
d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a)
Tam giác AHB = Tam giác BHM ( theo ý c)
Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM
=> ^HBM = ^ACH ( hai góc tương ứng )
mà hai góc ở vị trí so le trong
=> BM // AC ( đpcm )
( Hình có thể k đc đẹp lắm )
a. Xét hai tam giác vuông AHB và tam giác vuông AHC có
\(\widehat{AHB}=\widehat{AHC}=90^O\)
Cạnh AH chung
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác AHB = tam giác AHC [ cạnh huyền - cạnh góc vuông ]
b.Theo câu a ; tam giác AHB = tam giác AHC
\(\Rightarrow\)HB = HC =\(\frac{BC}{2}=\frac{8}{2}=4cm\)
Áp dụng định lí Py-ta-go vào tam giác vuông AHB có
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AH^2=AB^2-HB^2\)
\(\Rightarrow AH^2=5^2-4^2\)
\(\Rightarrow AH^2=9\)
\(\Rightarrow AH=3cm\)
c.Xét hai tam giác vuông AHB và tam giác vuông MHB có
\(\widehat{AHB}=\widehat{MHB}=90^O\)
Cạnh HB chung
HA = HM [ gt ]
Do đó ; tam giác AHB = tam giác MHB [ cạnh góc vuông - cạnh góc vuông ]
\(\Rightarrow\)AB = MB [ cạnh tương ứng ]
Vậy tam giác ABM là tam giác cân tại B
d.Vì tam giác ABM cân tại B nên góc BAM = góc BAM [ 1 ]
Theo câu a ; tam giác AHB = tam giác AHC
\(\Rightarrow\)góc HAB = góc HAC hay góc MAB = góc MAC [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ; góc BMA = góc CAM [ ở vị trí so le trong ]
Vậy BM // AC
Học tốt