Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đắc Phú

Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC 

a) Chứng minh tam giác AHB = tam giác AHC và H là trung điểm của BC.

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc với AC.

Nguyễn Huỳnh Bảo Thanh
10 tháng 4 2020 lúc 20:59

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

Khách vãng lai đã xóa
Greninja
12 tháng 4 2020 lúc 16:37

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hồ Nhật Anh
Xem chi tiết
Minh tú Trần
Xem chi tiết
Hồ Nhật Anh
Xem chi tiết
Hà vy
Xem chi tiết
Nguyễn Đắc Phú
Xem chi tiết
nguyễn xuân kiên
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Hoàng Sơn
Xem chi tiết
iNfinitylove
Xem chi tiết