Cho tam giác ABC cân tại A, H là trung điểm của AB. Vẽ trung tuyến AD. Gọi E là điểm đối xứng với D qua H
a/. Chứng minh AEBD là hình chữ nhật.
b/. Tứ giác ACDE là hình bình hành.
c/. Chứng minh diện tích tứ giác AEBD bằng diện tích tam giác ABC.
d/. Tìm điều kiện của tam giác ABC để AEBD là hình vuông.
Bạn tự vẽ hình nhé.
a.
Xét tứ giác AEBD có:
AH = HB (H là trung điểm của AB)
HE = HD (vì E và D đối xứng với nhau qua H)
=> AEBD là hình bình hành.
Lại có: \(\widehat{ADB}=90^o\) (AD là đường trung tuyến của tam giác cân ABC)
Từ trên suy ra: AEBD là hình chữ nhật.
b.
Vì AEBD là hình chữ nhật nên ta có:
- AE // BD và AE = BD (1)
mà: BC // AE và BD = DC (2)
Từ (1), (2) suy ra: ACDE là hình bình hành.
c.
có: \(S_{AEBD}=AD.DB=\dfrac{1}{2}.AD.BC=S_{ABC}\)
d.
Để AEBD là hình vuông thì AD = BD
=> \(AD=\dfrac{1}{2}BC\) => Tg ABC vuông.
Mà AB = AC
=> Điều kiện của tam giác ABC là vuông cân tại A để AEBD là hình vuông.