1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O, R) đường kính AB và dây AC không qua tâm O. Gọi H là trung điểm của AC
a, Tính số đo góc A C B ^ và chứng minh OH//BC
b, Tiếp tuyên tại C của (O) cắt OH ở M. Chứng minh đường thẳng AM là tiếp tuyến của (O) tại A
c, Vẽ CK vuông góc AB tại K. Gọi I là trung điểm của CK và đặt C A B ^ = α. Chứng minh IK = Rsinα.cosα
d, Chứng minh ba điểm M, I, B thẳng hàng
M.n giúp e vs ạ . Cảm ơn m.n nhiều
Cho đường tròn tâm O bán kính R , đường kính AB. Một điểm C thuộc đường tròn tâm O bán kính R sao cho AC=R . Kẻ OH vuông góc với AC tại H . Qua C vẽ một tiếp tuyến (O;R) . Tiếp tuyến này cắt OH tại D. Chứng minh :
a. AD Tiếp tuyến của đường tròn tâm O
b . Tính BC thep R và các tỉ số lượng giác của góc ABC
c. Gọi M là điểm thuộc tia đối của tia AC . Chứng minh: CM . MA = MO ^2 . AO ^2
Cho đường tròn tâm O , bán kính r , đường kính AB , dây AC không qua tâm , H là trung điểm AC. a) Tính góc ACB và chứng minh OH song song với BC b) Tiếp tuyến tại C của đường tròn O cắt tia OH ở M. CM: MA là tiếp tuyến tại A của đường tròn
Cho đường tròn (O; R) đường kính BC và một điểm A nằm trên đường tròn sao
cho AB = R. Gọi H là trung điểm của dây cung AC.
a) Tính số đo các góc của tam giác ABC.
b) Qua C vẽ tiếp tuyến của đường tròn (O) cắt tia OH tại D. Chứng minh DA là tiếp
tuyến của đường tròn (O).
c) Tính độ dài bán kính của đường tròn ngoại tiếp tam giác ACD theo R.
d) Trên tia đối của tia AC lấy điểm M, từ M vẽ hai tiếp tuyến ME và MF với đường
tròn (O) tại E và F. Chứng minh ba điểm D, E, F thẳng hàng.
cho đường tròn tâm O bán kính R đường kính AB. Vẽ điểm C thuộc đường tròn tâm O bán kính R sao cho AC bằng R .kẻ OH vuông góc với AC tại H . qua điểm C vẽ một tiếp tuyến của đường tròn tâm O bán kính R tiếp tuyến này cắt đường thẳng OH tại D
Câu a/ chứng minh AD là tiếp tuyến của đường tròn tâm O bán kính R
Câu b/ tính BC theo R và tỉ số lượng giác của góc ABC
Cau c/ gọi M là điểm thuộc tia đối của tia CA . chứng minh MC nhân với MA bằng MO bình phương trừ AO bình phương
Cho đường tròn(O;R),đường kính AB và dây AC không qua tâm O .Gọi H là trung điểm của AC.
a)Tính góc ACB và chứng minh OH song song với BC .
b)Tiếp tuyến tại C của (O) cắt OH ở M .Chứng minh đường thẳng AM lá tiếp tuyến của (O) tại A .
c)Vẽ CK vuông góc với AB tại K .Gọi I là trung điểm của CK và đặt góc CAB=anpha.Chứng minh IK=2Rsin (anpha) . cos(anpha)
a)Chứng minh ba điểm M,I,B thẳng hàng.
Cho đường tròn (O;R), đường kính AB. Vẽ điểm C thuộc đường tròn (O;R) sao cho AC = R. Kẻ OH vuông góc với AC tại H. Qua điểm C vẽ một tiếp tuyến của đường tròn (O;R), tiếp tuyến này cắt đường thẳng OH tại D.
1) Chứng minh AD là tiếp tuyến của đường tròn (O;R).
2) Tính BC theo R và các tỉ số lượng giác của góc ABC
3) Gọi M là điểm thuộc tia đối cua tia CA. Chứng min MC.MA = MO2 – AO2
Cho đường tròn (O), đường kính BC, A là điểm thuộc (O) sao cho AB<AC, D là điểm nằm giữa O và C. Đường thẳng vuông góc với BC tại D cắt AC tại E và AB tại F.
a/ Chứng minh các tứ giác ABDE và ADCF nội tiếp
b/ Chứng minh góc AEF = góc ABC
c/ Tiếp tuyến tại A của đường tròn (O) cắt DE tại M. Chứng minh tam giác AME cân tại M.
d/ Gọi I là tâm đường tròn ngoại tiếp tứ giác ADCF. Chứng minh OI vuông góc AC