Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Bá Minh Thành

Cho tam giác ABC cân tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc với AB; kẻ DF vuông góc với AC 

 Chứng minh rằng:

a)tam giác DEB = tâm giác DFC.      b) tam giác AED= tam giác AFD
 c) AD là tiaphân giác của BAC

Nguyễn Phương Uyên
7 tháng 2 2020 lúc 10:42

a, xét tam giác DEB và tam giác DFC có : góc BED  = góc DFC = 90 

BD = DF do D là trung điểm của BC (gt)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

=> tam giác DEB = tam giác DFC (ch-gn)

b, tam giác DEB = tam giác DFC (Câu a)

=> DE = DF (đn)

xét tam giác ADE và tam giác ADF có : AD chung

góc AED = tam giác AFD = 90 

=> tam giác ADE = tam giác ADF (ch-cgv)

c, tam giác ADE = tam giác ADF  (câu b)

=> góc BAD = góc CAD (đn)

AD nằm giữa AB và AC 

=> AD là phân giác của góc BAC (Đn)

Khách vãng lai đã xóa
Trí Tiên亗
7 tháng 2 2020 lúc 10:49

A B C D E F

( Hình vẽ không được chính xác lắm mong bạn thông cảm )

a) Ta có \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) ( tính chất )

Do \(D\) là trung điểm của BC

\(\Rightarrow BD=CD=\frac{BC}{2}\)

Xét \(\Delta DEB\) và \(\Delta DFC\) có :

\(\hept{\begin{cases}\widehat{DEB}=\widehat{DFC}\left(=90^o\right)\\BD=CD\left(cmt\right)\\\widehat{EBD}=\widehat{FCD}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\)\(\Delta DEB\)\(=\)\(\Delta DFC\) ( cạnh huyền - góc nhọn )

b) Do \(\Delta DEB=\Delta DFC\left(cmt\right)\)

\(\Rightarrow DE=DF\)

Xét \(\Delta AED\) và \(\Delta AFD\) có :

\(\hept{\begin{cases}\widehat{DEA}=\widehat{DFA}\left(=90^o\right)\\ADchung\\DE=DF\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta AED=\Delta AFD\) ( cạnh huyền - cạnh góc vuông )

c) Từ \(\Rightarrow\Delta AED=\Delta AFD\) (cmt)

\(\Rightarrow\widehat{EAD}=\widehat{FAD}\Rightarrow\widehat{BAD}=\widehat{CAD}\)

\(\Rightarrow AD\) là tia phân giác của \(\widehat{BAC}\)

Khách vãng lai đã xóa
Nguyễn Bá Mến
28 tháng 4 2023 lúc 20:18

a, xét tam giác DEB và tam giác DFC có : góc BED  = góc DFC = 90 

BD = DF do D là trung điểm của BC (gt)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

=> tam giác DEB = tam giác DFC (ch-gn)

b, tam giác DEB = tam giác DFC (Câu a)

=> DE = DF (đn)

xét tam giác ADE và tam giác ADF có : AD chung

góc AED = tam giác AFD = 90 

=> tam giác ADE = tam giác ADF (ch-cgv)

c, tam giác ADE = tam giác ADF  (câu b)

=> góc BAD = góc CAD (đn)

AD nằm giữa AB và AC 

=> AD là phân giác của góc BAC (Đn)


Các câu hỏi tương tự
Vũ Thái Sơn
Xem chi tiết
khuất giang huy
Xem chi tiết
cute bo
Xem chi tiết
Phu Pham
Xem chi tiết
thien pham
Xem chi tiết
Quỳnh Anh Bùi
Xem chi tiết
ღd̾ươn̾g̾ღh̾i̾ền̾
Xem chi tiết
29. Đoàn Phương Nghi
Xem chi tiết
Xem chi tiết