a: Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
\(\hat{EBC}\) chung
Do đó: ΔBEC~ΔBDA
b: Xét ΔCDH vuông tại D và ΔCEB vuông tại E có
\(\hat{DCH}\) chung
Do đó: ΔCDH~ΔCEB
=>\(\frac{CD}{CE}=\frac{CH}{CB}\)
=>\(CD\cdot CB=CH\cdot CE\)
a: Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
\(\hat{EBC}\) chung
Do đó: ΔBEC~ΔBDA
b: Xét ΔCDH vuông tại D và ΔCEB vuông tại E có
\(\hat{DCH}\) chung
Do đó: ΔCDH~ΔCEB
=>\(\frac{CD}{CE}=\frac{CH}{CB}\)
=>\(CD\cdot CB=CH\cdot CE\)
Cho Tam giác nhọn ABC có BC=a không đổi, ba đường cao AK,BD,CE cắt nhau tại H. Gọi M là tđ BC.
a) tam giác ADE đồng dạng ABC
b)Tính BH.BD+CH.CE theo a
c)Đường thẳng qua A vuông góc với AM cắt BD,CE lần lượt tại P và Q. Cm: MP=MQ
Cho tam giác ABC có ba góc nhọn. Vẽ hai đường cao BD và CE của tam giác ABC cắt nhau tại H
a) Chứng minh : tam giác EHB đồng dạng với tam giác DHC
b) Vẽ AH cắt BC tại F. Chứng minh : AF vuông góc với BC và BC.BD=BF.BC
c) Chứng minh : BH.BD+CH.CE=BC^2
Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.
a) Tìm các tam giác đồng dạng với tam giác BDH.
b).Tính độ dài HD, BH
c).Tính độ dài HE
Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:
a) BH.BD = BK.BC
b)CH.CE = CK.CB
c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.
Bài 8 : Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:
a) Tam giác BFM đồng dạng với tam giác CEM.
b) Tam giác BHC và tam giác CEM đồng dạng.
c) ME + MF không đổi khi M di động trên BC.
Bài 9: Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm ; BC = 20 cm ; AA’ = 15cm.
a) Tính thể tích hình hộp chữ nhật.
b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.
Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.
Tính : a) Đường chéo AC
b) Tính đường cao SO và thể tích hình chóp.
Bài 1: cho tam giác ABC cân tại A ( góc A < 90 độ ) . Các đường cao AD,CE cách nhau tại H
a, chứng minh tam giác BEC đồng dạng với tam giác BDA
b, chứng minh DC^2=DH×DA
c, cho AB= 10cm,AE=8cm . Tính EC,HC
1, cho tam giác abc, góc a bằng 2 lần góc b , ac=4,5cm, bc=6cm. trên tia đối của tia ac lấy e sao cho ae=ab
a, tam giác abc đồng dạng với tam giác bec
b, tính ab
2, cho hình bình hành abcd ,f thuộc bc. tia à cắt bd,dc tai e,g.
a, tam giác bef đồng dạng với tam giác dea
tam giác deg đồng dạng với tam giác bae
b, ae. ae=ef.eg
c, bf.dg ko đổi khi f thay đổi trên bc
Bài 1: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng : Tg ADB đồng dạng với Tg AEC.
b)Chứng minh rằng :Tg AED đồng dạng Tg ACB.
C)Chứng minh rằng : HE.HC=HD.HB
d)Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC . Chứng minh rằng : H,M,K thẳng hàng.
Bài 2: Cho tam giác PQK cân tại P, trên QK lấy M . Vẽ ME,MF lần lượt vuông góc với PK , PQ. Kẻ đường cao KH. Chứng minh :
a)Tam giác QFM đồng dạng với tam giác QHK.
b)Tam giác QFM đồng dạng với tam giác KEM.
c)EM.QK=KM.KH
d)ME+MF ko thay đổi khi M di động trên QK
Cho tam giác ABC nhọn. Đường cao BD, CE cắt nhau tại H. Gọi là hình chiếu của H trên BC.
A. Chứng minh: tam giác BHK đồng dạng tam giác BCD
B. Chứng minh: CH.CE=CK.CB
C. Chứng minh: tam giác ADE đồng dạng tam giác ABC
D. Chứng minh: BH.BD+CH.CE=BC.BC
cho tam giác abc nhọn các đường cao ad và be cắt nhau tại h. qua a kẻ đường thẳng song song với bc, qua b kẻ đường thảng song song với ad, chứng cắt nhau tại m. a) tứ giác ambd là hình gì? chứng minh b) chứng minh tam giác ahe đồng dạng với tam giác bec, tam giác dec đồng dạng với tam giác abc
Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh
a) Tam giác ABH đồng dạng tam giác ACE
b) Tam giác BHC đồng dạng tam giác CFA
c) Tổng AB.AE+AD.AF không đổi
Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh:
a) IH.AB=IA.BH
b) BHA đồng dạng BAC => AB^2=BH.BC
c) IH/IA = AE/EC
d) AIE cân
Câu 3: Cho góc nhọn xOy, lần lượt lấy trên Ox các điểm A,B sao cho OA= 3 cm, OB=10cm. Trên Oy lấy lần lượt các điểm C,D sao cho OC=5cm, OD=6cm. Hai đoạn thẳngAD và BC cắt nhau tại I:
a) AOD đồng dạng COB
b) AIB đồng dạng CID
c) IA.ID=IC.IB
d) Cho diện tích ICD= 3 cm^2. Hãy tính diện tích của IAB?
Bài 1: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại
K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng
tâm của tam giác ABC
Bài2 : Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D
thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2. Chứng
minh rằng:
a) Tam giác DBM và MCE đồng dạng
b) Tam giác DME cùng đồng dạng với hai tam giác trên.
c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.
d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.
GIẢI GIÚP MÌNH VỚI Ạ MÌNH CẦN GẤP !!! CẢM ƠN!!