Cho tam giác ABC cân tại A (góc A= 90o);kẻ đường thẳng BD vuông góc với AC (DeAC); CE vuông góc với AB (EeAB) .BD;CE cắt nhau tại H
a) chứng minh : tam giác ABD= tam giác ACE
b) tam giác BHC là tam giác gì vì sao
c) so sánh đoạn HB và HD
d) trên tia đối tia EH lấy điểm N sao cho NH< HC ;trên tia đối của tia DH lấy điểm M sao cho MH=NH. Chứng minh các đường thẳng BN;AH;CM đồng quy
lm đc mà lừi lm hết qué:((
Tái bút : câu c, d chắc ko lm đc:))
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
DO đó: ΔABD=ΔACE
b: XétΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nênΔHBC cân tại H
c: ta có: HB=HC
mà HC>HD
nên HB>HD