Cho tam giác ABC cân tại A (góc A < 90 độ). Vẽ AH vuông góc với BC tại H.
a. Chứng minh tam giác AHC = tam giác AHB
b. Từ H vv HE\(\perp\)tại E, HF\(\perp\)AC tại F. C/m tam giác EAH ồi suy ra tam giác HEF là tam giác cân.
c. Đường thẳng vuông gvc với AC tại C cắt AH tvi K. C/m EH // BK.
d. Qua A, vex đường thẳng // BC cắt tia HF tại N. Trên tia HE lấy M sao cho HN=HM. C/m M,A,N thẳng hàng.
Tự vẽ hình
a) Vì tam giác ABC cân tại A
=> AB = AC và Góc ABC = Góc ACB
Xét tam giác AHC và tam giác AHB, ta có:
Góc AHB = AHC ( = 90 độ )
AB = AC (cmt)
Góc ABC = Góc ACB ( cmt)
=> Tam giác AHC = Tam giác AHB ( ch-gn )
b) Vì tam giác AHC = Tam giác AHB ( câu a )
=> BH = HC ( Hai cạnh tương ứng )
Xét tam giác BHN và tam giác CHM, ta có:
BH = HC ( cmt )
Góc BHN = Góc CHM ( Hai góc đối đỉnh )
HN = HM ( gt )
=> Tam giác BHN = Tam giác CHM ( c-g-c )
=> Góc HMC = Góc BNH ( Hai góc tương ứng )
Mà góc HMC và góc BNH là hai góc so le trong
=> BN // AC
c) Xét tam giác MHC và tam giác QHB, ta có:
Góc HMC = Góc HQB ( = 90 độ )
Góc MCH = Góc QBH ( do tam giác ABC cân tại A )
HC = HB ( câu b )
=> Tam giác MHC = Tam giác QHB ( ch-gn )
=> Góc MHC = Góc QHB
Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )
=> Góc QHB = Góc BHN
Xét tam giác AQH và tam giác AMH, ta có:
Góc AQH = Góc AMH ( = 90 độ )
AH là cạnh huyền chung
Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )
=> Tam giác AQH = Tam giác AMH ( ch-gn )
=> QH = HM ( Hai cạnh tương ứng )
Mà HM = HN ( gt )
=> QH = HN
Gọi K là trung điểm của QN
Xét tam giác KHQ và tam giác KHN, ta có:
HQ = HN ( cmt )
Góc QHB = Góc BHN ( cmt )
HK là cạnh chung
=> Tam giác KHQ = Tam giác KHN ( c-g-c )
=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )
Mà góc QKH và góc NKH là hai góc kề bù
=> Góc QKH = Góc NKH = 180/2 = 90 độ
=> HK là đường trung trực của QN
Hay BC là đường trung trực của QN
a) \(\Delta AHC=\Delta AHB\left(c.g.c\right)\).
b) \(\Delta AHE=\Delta AHF\) (cạnh huyền - góc nhọn)
Suy ra \(HE=HF\) do đó tam giác \(HEF\) cân.
c) \(EH \parallel BK\) vì \(EH,BK\) cùng vuông góc với \(AC\).
d) Giả sử \(HE\) cắt \(AN\) tại \(M'\).
Do tam giác \(HM'N\) cân tại \(H\) (vì \(\widehat{EHA}=\widehat{FHA}\))
do đó \(HM'=HN\) từ đó suy ra \(M'\equiv M\) suy ra đpcm.