a) Xét ΔABM vuông tại B và ΔACM vuông tại M có
AM chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)
a) Xét ΔABM vuông tại B và ΔACM vuông tại M có
AM chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)
Giúp mk vs ạ!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
d) Qua M kẻ đường thẳng song song AC cắt AB tại D. Chứng minh D,G,C thẳng hàng.
Giúp mk vs ạ!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
d) Qua M kẻ đường thẳng song song AC cắt AB tại D. Chứng minh D,G,C thẳng hàng.
Giúp mk bài này vs mọi người ơi!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
Bài 17: Cho tam giác ABC cân tại A. Gọi M là trung điểm BC.
a, Chứng minh \(\Delta\) ABM =\(\Delta\) ACM
b, Chứng minh AM là phân giác góc BAC và AM vuông góc BC.
c, Lấy E bất kì trên đoạn AM. Chứng minh tam giác EBC cân.
Giúp mk vs mọi người ơi!!!
Giúp mk vs ạ!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
d) Qua M kẻ đường thẳng song song AC cắt AB tại D. Chứng minh D,G,C thẳng hàng.
Cho tam giác cân ABC, cạnh đáy BC. từ B kẻ đường vuông góc với Ab và từ C kẻ đường vuông góc với Ac.2 đường cắt nahu tại M. Chứng minh rằng:
a. tam giác ABM=tam giác ACM
b. AM là đường trung trực của BC
Cho tam giác cân ABC, cạnh đáy BC. từ B kẻ đường vuông góc với Ab và từ C kẻ đường vuông góc với Ac.2 đường cắt nahu tại M. Chứng minh rằng:
a. tam giác ABM=tam giác ACM
b. AM là đường trung trực của BC
cho tam giác ABC cân tại A có A<90 độ. Đường thẳng vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở M.
a) chứng minh hai tam giác ABM và ACM bằng nhau và AM là phân giác BAC.
b)Qua M vẽ đường thẳng song song với AC, đường thẳng này cắt AB ở D.Trên tia đối của tia CA lấy điểm E sao cho CE=DB.Chứng minh tam giác DBM= tam giác ECM.
c)BC cắt DM ở F và cắt DE ở I.Chứng minh DF=CE và IF=IC.
d) chứng minh IMC=IEC
cho tam giác ABC có AB=AC và BC<AB,gọi M là trung điểm của BC
a)c/m: tam giác ABM=tam giác ACM và AM là tia phân giác của góc BAC
b)trên cạnh AB lấy điểm D sao cho CB=CD.Kẻ tia phân giác của góc BCD,tia này cắt cạnh BD tại N . CHỨNG MINH: CN vuông góc BD
c)trên tia đối của tia CA lấy điểm E sao cho AD=CE, chứng minh: BE-CE=2BN