Gợi ý: Chứng minh BEFC là hình thang cân
Gợi ý: Chứng minh BEFC là hình thang cân
cho tam giác ABC nội tiếp đường tròn (O), xy là tiếp tuyến tại A của đường tròn. Một đường thẳng song song với xy cắt các cạnh AB, AC lần lượt tại D và E. chứng minh tứ giác BDEC là tứ giác nội tiép
cho tam giác ABC, AB<AC và nội tiếp đường tròn (O). D là điểm đối xứng với A qua O. Tiếp tuyến với (O) tại D cắt BC tại E. Đường thẳng DE lần lượt cắt các đương thẳng AB, AC tại K,L. ĐƯơng thẳng qua A song song với EO cắt DE tại F. Đường thẳng qua song song với EO cắt DE tại F. ĐƯơng thẳng qua D song song với Eo lần lượt cắt AB,AC tại M,N. CMR
a. Tứ giác BCLK nội tiếp
b. Đương thẳng EF là tiếp tuyến của đương tròn ngoại tiếp tam giác BCF
c. D là trung điểm MN
cần giải gấp câu c
Cho tam giác nhọn ABC (AB < AC), đường tròn tâm (O), đường kính BC cắt cạnh AB, AC lần lượt tại F và E, BE và CF cắt nhau tại H.
a) Chứng minh: AH vuông góc BC tại D và tứ giác CDHE nội tiếp.
b) Qua D vẽ đường thẳng song song CF cắt tia EF tại M. Chứng minh: tứ giác BMED nội tiếp và \(\widehat{EMB}=\widehat{EDC}\)
c) Chứng minh OF // BM.
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) . Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Vẽ đường cao BF của tam giác ABC. Từ F kẻ đường thẳng song song với MA cắt AB tại E.
a) chứng minh rằng MA^2=MB.MC suy ra MC/MB=AC^2/AB^2
b) CE cắt BF tại H. Chứng minh tứ giác BEFC nội tiếp, suy ra AH vuông góc BC tại D
c) gọi I là trung điểm BC. Chứng minh bốn điểm E,F,D,I cùng nằm trên một đường tròn
d) từ H vẽ đường thẳng vuông góc với HI cắt AB,AC theo thứ tứ tại P,Q. Chứng minh H là trung điểm PQ
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) . Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Vẽ đường cao BF của tam giác ABC. Từ F kẻ đường thẳng song song với MA cắt AB tại E.
a) chứng minh rằng MA^2=MB.MC suy ra MC/MB=AC^2/AB^2
b) CE cắt BF tại H. Chứng minh tứ giác BEFC nội tiếp, suy ra AH vuông góc BC tại D
c) gọi I là trung điểm BC. Chứng minh bốn điểm E,F,D,I cùng nằm trên một đường tròn
d) từ H vẽ đường thẳng vuông góc với HI cắt AB,AC theo thứ tứ tại P,Q. Chứng minh H là trung điểm PQ
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M và N. Chứng minh DM=DN
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh:
a) B D 2 = A D . C D
b) Tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh:
a) B D 2 = A D . C D
b) Tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN