Ta có 4/(BI)2 = AB2 / (BH2 AH 2 )
<=> (AH/BI)2 = (AB/BC)2 (1)
Deex thấy 2 tam giác AHB và BIC là đồng dạng nên đẳng thức (1) là đúng
Ta có 4/(BI)2 = AB2 / (BH2 AH 2 )
<=> (AH/BI)2 = (AB/BC)2 (1)
Deex thấy 2 tam giác AHB và BIC là đồng dạng nên đẳng thức (1) là đúng
Cho tam giác ABC cân tại A, 2 đường cao AH và BK . Từ A kẻ đường thẳng vuông góc với AB, cắt BC tại D. BK cắt AD tại I.
a) Cho AB = 4 cm, AD = 7,5 cm. Tính AH
b) Cho AH =4 cm, BD = 10 cm. Tính BH
c) chứng minh BK.BI = BH.BD
d) Chứng minh : \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Cho tam giác ABC cân tại A ( góc A nhọn), đường cao BH. Chứng minh \(\frac{AH}{BH}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A, đường cao AH và BK. Chứng minh
\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Cho tam giác ABC cân tại A, có góc A nhọn . Vẽ đường cao BH. CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A, góc A nhọn, đường cao BH.
CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A (góc A < 90 độ), đường cao BH. CMR: \(\frac{AH}{CH}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A, đường cao AH và BK. Chứng minh
\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Cho tam giác ABC cân tại A, AH là đường cao. BD là đường phân giác. Biết \(\frac{AH}{BD}=\frac{1}{2}.\)Tính số đo các góc của tam giác ABC
cho tam giác ABC cân tại A. Đường cao AH, AB= 20cm, BC= 24cm
a. tính AH
b. kẻ HE vuông góc AC tính HE
c. cho BK là đường cao của tam giác ABC chứng minh \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)