Cho tam giác ABC có AH vuông góc với BC, có góc BAH = 2\(\widehat{C}\) Tia phân giác của \(\widehat{B}\) cắt AC tại E
a. Tia phân giác của \(\widehat{BAH}\) cắt BE tại I. Chứng minh tam giác AIE vuông cân
b. Chứng minh HE là phân giác của \(\widehat{HAC}\)
Cho tam giác ABC cân tại A có \(\widehat{A}\) =90o, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác góc ABD cắt AC tại M. CM:
a) Tia AD là phân giác của góc BAC
b) AM=BC
Cho tam giác ABC cân tại A, trên tia đối của tia AC. Lấy AD=AC
a) Tam giác ABD là tam giác gì?
b) CM: \(\widehat{DBC}=\widehat{BDC}+\widehat{DCB}\)
c) Tính \(\widehat{DBC}\)?
Cho tam giác ABC cân tại A có \(\widehat{A}=20^0\), vẽ tam giác đều DBC ( D nằm trong tam giác ABC ). Tia phân giác của góc ABD cắt AC tại M . Chứng minh :
a) Tia AD là phân giác của góc BAC
b) AM=BC
Cho tam giác ABC cân tại A và có B 2A . Đường phân giác của góc B cắt AC tại D. a/Tính số đo các góc của tam giác ABC. b/Chứng minh DA = DB. c/Chứng minh DA = BC
Bài 1:Cho tam giác ABC có và BC=6cm
a)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx BC.Giải thích vì sao BA là tia phân giác của góc xBC
b)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEF
c)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACN
d)So sánh 2 góc ENC và xBA
Bài 2:Cho tam giác ABC có
a)Tia phân giác của góc ABc cắt AC tại D.Qua A vẽ đường thẳng song song với BD,đường thẳng này cắt đường thẳng BC tại E.So sánh 2 góc BEA và BAE
b)Qua A vẽ đường thẳng xy song song BC.Tính số đo góc BAI
Bài 3:Cho tam giác ABC có
a)Hai tia phân giác của góc ABC và góc ACB cắt nhau tại I.Qua I vẽ đường thẳng song song với BC,đường thẳng này cắt các đường thẳng AB và AC tại D và E.Tính số đo góc ACI và góc CIE
b)So sánh 2 góc DIB và ABI
c)Qua A kẻ AH tại H,qua C kẻ CK tại K.Giải thích vì sao AH//CK
d)Tính số đo góc CAH
Bài 8:Cho tam giác ABC có BC=8cm và
a)Qua A vẽ đường thẳng xy song song với BC(tia Ax thuộc nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B).Tính số đo góc yAB và BAC
b)Vẽ AH tại H.Tính số đo các góc BAH và CAH
Bài 9:Cho tam giác ABC có BC=6cm,
a)Qua B kẻ tại D và tại E,2 đường thẳng BD và CE cắt nhau tại H.Qua B và C lần lượt vẽ các đường thẳng vuông góc với AB và AC,2 đường thẳng này cắt nhau tại K.Vì sao CK//BD và BK//CE?
b)Tính số đo góc DBC
c)TÍnh số đo các góc HCB và EHD
Bài 1:Cho tam giác ABC có và BC=6cm
a)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx BC.Giải thích vì sao BA là tia phân giác của góc xBC
b)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEF
c)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACN
d)So sánh 2 góc ENC và xBA
Bài 2:Cho tam giác ABC có
a)Tia phân giác của góc ABc cắt AC tại D.Qua A vẽ đường thẳng song song với BD,đường thẳng này cắt đường thẳng BC tại E.So sánh 2 góc BEA và BAE
b)Qua A vẽ đường thẳng xy song song BC.Tính số đo góc BAI
Bài 3:Cho tam giác ABC có
a)Hai tia phân giác của góc ABC và góc ACB cắt nhau tại I.Qua I vẽ đường thẳng song song với BC,đường thẳng này cắt các đường thẳng AB và AC tại D và E.Tính số đo góc ACI và góc CIE
b)So sánh 2 góc DIB và ABI
c)Qua A kẻ AH tại H,qua C kẻ CK tại K.Giải thích vì sao AH//CK
d)Tính số đo góc CAH
Bài 8:Cho tam giác ABC có BC=8cm và
a)Qua A vẽ đường thẳng xy song song với BC(tia Ax thuộc nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B).Tính số đo góc yAB và BAC
b)Vẽ AH tại H.Tính số đo các góc BAH và CAH
Bài 9:Cho tam giác ABC có BC=6cm,
a)Qua B kẻ tại D và tại E,2 đường thẳng BD và CE cắt nhau tại H.Qua B và C lần lượt vẽ các đường thẳng vuông góc với AB và AC,2 đường thẳng này cắt nhau tại K.Vì sao CK//BD và BK//CE?
b)Tính số đo góc DBC
c)TÍnh số đo các góc HCB và EHD
Cho tam giác ABC, tia phân giác của góc A cắt BC tại D. Biết \(\widehat{ADB}\)=80o và \(\widehat{B}\)=1.5\(\widehat{C}\) Tính số đo góc \(\widehat{A}\)của tam giác ABC.
△ ABC cân tại A, \(\widehat{A}\)=120 độ. Từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC, 2 đường thẳng cắt nhau tại D.
a. CM △ABD= △ACD.
b. CM △DBC là tam giác đều.
c. Gọi H là giao điểm của AD và BC, CM 2BH+AD>AB+BD.