Gọi H' đối xứng với H qua BC, D là giao điểm của AH và BC.
Dễ thấy BHCH' là hình thoi.
\(\Rightarrow\Delta ABH'\)vuông tại B
\(\Rightarrow H'B^2=H'D.H'A\)
\(\Leftrightarrow BH^2=HD\left(2HD+14\right)\)
\(\Leftrightarrow30^2=HD\left(2HD+14\right)\)
\(\Leftrightarrow\orbr{\begin{cases}HD=18\\HD=-25\left(l\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AD=14+18=32\\BD=\sqrt{30^2-18^2}=24\end{cases}}\)
\(\Rightarrow AB=\sqrt{32^2+24^2}=40\)
nhảm nhí
B/G
??????????????????????????????????????????????????????????????????????????????????????????????????
HIHI
???//?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????