Áp dụng công thức tính diện tích tam giác ta có:
\(S_{ABC}\) =\(\frac{1}{2}\).AH.BC= \(\frac{1}{2}\).BK.AC
<=> \(\frac{1}{2}\).6.BC= \(\frac{1}{2}\).5.AC
<=> AC= \(\frac{6.BC}{5}\)(1)
Mà trong tam giác ABC cân tại A thì đường cao AH cũng là đường trung tuyến => HC=\(\frac{BC}{2}\)(2)
ÁP dụng định lý pytago vào trong tam giác vuông AHC ta có:
\(AC^2\)=\(AH^2\)+\(HC^2\)
từ (1) và (2) ta có:
<=>\(\left(\frac{6BC}{5}\right)^2\)=\(6^2\)+\(\left(\frac{BC}{2}\right)^2\)
<=>\(\frac{36BC^2}{25}\)-\(\frac{BC^2}{4}\)=36
<=>\(\frac{119BC^2}{100}\)=36
<=> \(BC^2\)=\(\frac{3600}{119}\)
<=> BC=\(\sqrt{\frac{3600}{119}}\)=\(\frac{60}{\sqrt{119}}\)