Cho tam giác ABC vuông tại A có góc B = 2 góc C, đường cao AD.
a) CM: tam giác ADB đồng dạng tam giác ABC
b) Kẻ tia phân giác của góc ABC cắt AD tại F và cắt AC tại E. CM: AB^2=AE*AC
c) chứng tỏ DF/Fa = AE/EC
Cho tam giác ABC và đường cao AH . Kẻ HI vuông góc với AB tại I, HK vuông góc với AC tại K
a) Chững minh tam giác ABC và tam giác AHB đồng dạng với nhau; AH^2=AI.AB
b) Chứng minh tam giác AIK đồng dạng với tam giác ACB
c) Đừng phân giác của góc AHB cắt AB tại E. Biết EB/AB=2/5. Chứng minh rằng BI/AI=4/9
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC). Gọi D là điểm đối xứng với B qua H
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) từ C kẻ đường thẳng vuông góc vs tia AD, cắt AD tại E. Chứng minh AH.CD=CE.AD
c) chứng minh tam giác ABC đồng dạng vs tam giác EDC và tính diện tích tam giác EDC bt AB=6cm, AC=8cm
d) bt AH cắt CE tại E, tia FD cắt AC tại K. Chứng minh KD là tia phân giác góc HKE
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
Cho tam giác ABC vuông tại A có góc ABC=2 góc ACB, đường cao AD.
a) Chứng minh tam giác DBA đồng dạng với tam giác ABC.
b) Kẽ tia phân giác góc ABC cắt AD tại F và cắt AC tại E. Chứng minh AB.AB=AE.AC
c) Chứng minh EA.FA=EC.FD
Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.
AI GIÚP MÌNH CÂU NÀY VỚI Ạ, MÌNH CẦN GẮP LẮM
CÂU 1. CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, HD LÀ PHÂN GIÁC CỦA GÓC AHC. a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HAC
b) CHỨNG MINH AB × DC = AD × AC
CÂU 2. CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN, ĐƯỜNG CAO AH. VẼ HD VUÔNG GÓC VỚI AB TẠI D, HE VUÔNG GÓC VỚI AC TẠI E
a) CHỨNG MINH: TAM GIÁC AHB ĐỒNG DẠNG TAM GIÁC ADH, AH × AH = AD × AB
b) CHỨNG MINH: AD × AB = AE × AC
c) CHỨNG MINH TAM GIÁC ADE ĐỒNG DẠNG VỚI TG ACB
d) ĐƯỜNG PHÂN GIÁC GÓC AHB CẮT AB TẠI M. CM: MB = 2/5 AB VÀ TÍNH BD/DA
cho tam giác ABC Vuông tại A có AB=6cm,AC=8cm,AH là đường cao.A)chứng minh tam giác HBA đồng dạng tam giác ABC,B)tia phân giác góc ABC cắt AC tại D,I là giao điểm của AH và BD.tính AD,DC
1. Cho tứ giác ABCD có góc BAD+góc BCD=180 độ. Chứng minh góc BDA=góc ACB.
2. Cho tam giác abc có tia phân giác AD. Chứng minh AD2< AB. AC.
3. Cho tam giác ABC cần tại A. Đường cao AD. Hạ DH vuông góc với AC. Gọi I là trung điểm của DH. Chứng minh tam giác AID đồng dạng với tam giác BHC.