Cho tam giác ABC cân tại A (AC>BC), kẻ AH vuông góc tại A với BC (H thuộc BC)
a) Chứng minh tam giác ABH= tam giác ACH,kể từ đó suy ra H là trung điểm của đoạn thẳng BC
b) Trên tia đối của tia AC lấy điểm D sao cho H là trung điểm của AD. Chứng minh tam giác ABH= tam giác DCH
c) Chứng minh tam giác ABC cân
d) Tia đối của tia CB lấy điểm E sao cho DB = CE Chứng minh BAE là góc nhọn.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
b: Sửa đề: Trên tia đối của tia HA
Xét ΔABH vuông tại H và ΔDCH vuông tại H có
HA=HD
HB=HC
Do đó: ΔABH=ΔDCH
c: Sửa đề: Cm ΔACD cân
Ta có: ΔABH=ΔDCH
=>DC=AB
mà AB=AC
nên CA=CD
=>ΔCAD cân tại C