a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó: ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC co AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
d: AB=AC
IB=IC
Do đó: AI là trung trực của BC
=>AI vuông góc với BC
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó: ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC co AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
d: AB=AC
IB=IC
Do đó: AI là trung trực của BC
=>AI vuông góc với BC
cho tam giác ABC cân tại A (A>90o ).kẻ BD phân giác vuông góc vs AC tại điểm D ,kẻ CE vuông góc vs AB tại E .
a, Chứng minh:tam giác ADE cân
b, chứng minh :DE // DC
c, gọi I là giao điểm của BD và CE chứng minh IB = IC
d, chứng minh AI vuông góc vs BC
Cho tam giác ABC cân tại A ( Góc A nhọn ). Kẻ BD vuông góc với AC tại D; Kẻ CE vuông góc với AB tại E
a, Chứng minh tam giác ADE cân
b, Chứng minh DE song song với BC
c, Gọi I là giao điểm của BD và CE, chứng minh IB = IC
d, Chứng minh AI vuông góc với BC
Cho tam giác ABC cân tại A A ^ < 90 ° . Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E.
a) Chứng minh tam giác ADE cân.
b) Chứng minh DE// BC.
c) Gọi I là giao điểm của BD và CE. Chứng minh IB = IC
d) Chứng minh. A I ⊥ B C .
Cho tam giác ABC cân tại A ( < 90 ° ). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc vói AB tại E. a) Chứng minh tam giác ADE cân. b) Chứng minh DE / / BC c) Gọi I là giao điểm của BD và CE. Chứng minh IB = IC d) Chứng minh. AI BC
Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). Kẻ CE vuông góc với AB tại E.
a, Chứng minh tam giác ADE cân.
b, Chứng minh DE song song với BC.
c, Gọi I là giao điểm của BD và CE chứng minh IB bằng IC.
d, Chứng minh AI vuông góc với BC.
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E.
a, Chứng minh tam giác ADE cân
b, Chứng minh DE // BC
c, Gọi I là giao điểm của BD và CE. Chứng minh IB = IC
d, Chứng minh AI vuông góc BC
Ai làm được bài này mình sẽ cho tick
Bài 2: Cho ∆ABC cân tại A (𝐴̂ < 900 ). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E .
a) Chứng minh ∆ADE cân ;
b) Chứng minh DE // BC;
c) Gọi I là giao điểm của BD và CE. Chứng minh IB = IC;
d) AI cắt BC tại K. Chứng minh AK vuông góc với BC.
Bài 3: Cho ∆ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh ∆BDE = ∆CED;
b) Chứng minh IB = IC, ID = IE;
c) Chứng minh DE // BC;
d) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.
Cho tam giác ABC cân tại A (góc A nhọn) kẻ BD vuông góc với AC tại D,kẻ CE vuông góc AB tại E
TAM GIÁC ADE CÂN,DE SONG SONG BC,BD CẮT CE TẠI I,CHỨNG MINH IB=IC AI VUÔNG GÓC BC
Cho tam giác ABC cân tại A có góc A bằng 90 độ . Vẽ BD vuông góc tại D CE vuông góc AB tại E .Gọi I là giao điểm của BD và CE.
a)Chứng minh AD=AE
b)chứng minh AI là tia phân giác của góc BAC
c)Chứng minh DE song song với BC
d)Gọi M là trung điểm cạnh BC . Chứng minh ba điểm A,I,M thẳng hàng
ai giúp mình câu d với ạ. chỉ câu d thôi nha