Xét ΔAHB và ΔAKC có:
AB=AC(gt)
\(\widehat{A}\) : góc chung
AH=AK(gt)
=>ΔAHB=ΔAKC(c.g.c)
=>\(\widehat{ABH}=\widehat{ACK}\)
Có: \(\widehat{B}=\widehat{ABH}+\widehat{CBH}\)
\(\widehat{C}=\widehat{ACK}+\widehat{BCK}\)
Mà \(\widehat{B}=\widehat{C}\left(gt\right);\widehat{ABH}=\widehat{ACK}\left(cmt\right)\)
=> \(\widehat{CBH}=\widehat{BCK}\)
=>ΔOBC cân taaij O
Bn vẽ hình đi nha
Giải
Cách 1
Do tam giác ABC cân tại A nên góc ABC=góc ACB và AB=AC
Do AB=AC mà AK=AH=> KB=HC
Xét tam giác BKC và tam giác CHB có:
-BK=HC
-góc ABC=góc ACB
-BC chung
=> tam giác BHC=tam giác CKB(c.g.c)
=>góc CHB=góc BKC
Xét tam giác KOB và tam giác HOC
-góc BKO=góc CHO
-BK=HK
-góc KOB=góc HOC
=>.tam giác KOB=tam giác HOC (g.c.g)
=>BO=CO ( chôc này bn có thể nói góc bằng nhau rồi cộng góc lại cx đc)
=> tam giác BOC cân tại O ( đpcm)
Cách 2
Xét tam giác ABH và tam giác ACK có
-AK=AH
-góc A chung
-AB=AC( tam giác ABC cân tại A)
=>góc ABH=góc ACB
=>góc HBC=góc KCB
=> tam giác OBC cân tại O ( Đpcm)