Bài 6: Tam giác cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC. Gọi giao điểm của đường thẳng này với AB, AC theo thứ tự D, E. Chứng minh rằng DE = BD + CE

Trương Hồng Hạnh
3 tháng 6 2017 lúc 9:25

Ta có hình vẽ:

A B C I D E

Ta có: BI là pg góc B

=> góc DBI = góc IBC

Mà góc DIB = góc IBC (DE // BC)

=> góc DBI = góc DIB

=> tam giác BDI cân

=> BD = DI

Ta có: CI là phân giác góc C

=> góc ECI = góc ICB

Mà góc EIC = góc ICB (DE // BC)

=> góc ECI = góc EIC

=> tam giác CEI cân

=> CE = IE

Ta có: BD = DI; CE = IE

=> BD + CE = DI + IE

hay BD + CE = DE

hay DE = BD + CE

nguyễn thị thúy
8 tháng 3 2018 lúc 20:29

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: DI // BC (gt)

Suy ra:∠I1 =∠B1(so le trong) (1)

Lại có:∠B1 =∠B2 (2)

(vì BI là yia phân giác góc B)

Từ (1) và (2) suy ra:∠I1 =∠B2

=>∆BDI cân tại D =>BD=DI (3)

Mà IE // BC (gt) =>∠I1 =∠C1 (so le trong) (4)

Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc C) (5)

Từ (4) và (5) suy ra: ∠C1=∠C2. Suy ra. ∠CEI cân tại E

Suy ra: CE = EI (hai cạnh tương ứng) (6)

Từ (3) và (6) suy ra: BD + CE = DI + EI = DE


Các câu hỏi tương tự
Ngô Minh Hiếu
Xem chi tiết
Duy Linh
Xem chi tiết
Trương Tấn Thành
Xem chi tiết
Trịnh Bình An
Xem chi tiết
Trương duy Hựng
Xem chi tiết
Cao Hoànqq Tuệ Ann
Xem chi tiết
bikini ruoc
Xem chi tiết
Honekawa hanako
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết