a: Xét (A) có
AH là bán kính
BH\(\perp\)AH tại H
CH\(\perp\)AH tại H
Do đó: BH,CH là tiếp tuyến có H là tiếp điểm
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm
BM là tiếp tuyến có M là tiếp điểm
Do đó: AB là tia phân giác của \(\widehat{HAM}\)
Xét (A) có
CH là tiếp tuyến có H là tiếp điểm
CN là tiếp tuyến có N là tiếp điểm
Do đó: AC là tia phân giác của \(\widehat{HAN}\)
Ta có: \(\widehat{MAN}=\widehat{HAM}+\widehat{HAN}\)
\(=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
\(=2\cdot90^0=180^0\)
Do đó: M,A,N thẳng hàng