+) Đáp án A: Bất đẳng thức tương đương với x4 – 4x + 3 ≥ 0
ó (x – 1)(x3 + x2 + x – 3) ≥ 0
ó (x – 1)((x3 – 1) + (x2 + x – 2)) ≥ 0
ó (x – 1)((x – 1)(x2 + x + 1) + (x – 1)(x + 2)) ≥ 0
ó (x – 1)(x – 1)(x2 + x + 1 + x + 2) ≥ 0
ó (x – 1)2(x2 + 2x + 3) ≥ 0
ó (x – 1)2[(x + 1)2 + 1] ≥ 0 (luôn đúng với mọi số thực x)
Đẳng thức xảy ra khi và chỉ khi x = 1.
Nên A đúng
+) Đáp án B: Bất đẳng thức tương đương với x4 – x2 – 4x + 5 > 0
ó x4 – 2x2 + 1 + x2 – 4x + 4 > 0
ó (x2 – 1)2 + (x – 2)2 > 0
Ta có: (x2 – 1) ≥ 0, (x – 2)2 ≥ 0
ó (x2 – 1) + (x – 2)2 ≥ 0
Dấu bằng xảy ra ó x 2 − 1 = 0 x − 2 = 0 ó x = ± 1 x = 2 điều này không xảy ra
=> (x2 – 1)2 + (x – 2)2 > 0 nên B đúng
Đáp án cần chọn là: D