Cho số phức z thỏa mãn điều kiện |z|=3 Biết rằng tập hợp tất cả các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính của đường tròn đó là
A. R = 3 2
B. R = 3 5
C. R = 3 3
D. R = 3 7
Cho số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
A. 7
B. 20
C. 2 5
D. 7
Cho số phức z thỏa mãn tập hợp z - 1 = 3 . Biết rằng tập hợp các điểm biểu diễn số phức w với 3 - 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I - 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; - 1 2 , r = 3
Cho số phức z thỏa mãn tập hợp z - 1 = 3 . Biết rằng tập hợp các điểm biểu diễn số phức w với 3 - 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I - 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; - 1 2 , r = 3
Cho các số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 − 2 i + 4 − 3 i z là một đường tròn. Tính bán kính r của đường tròn đó
A. r = 5
B. r = 2 5
C. r = 10
D. r = 20
Cho số phức z thỏa mãn z - 2 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 - i ) z + i là một đường tròn. Tính bán kính r của đường tròn đó
A. 2 2
B. 4
C. 2
D. 2
Cho các số phức z thỏa mãn z = 7 . Tập hợp các điểm biểu diễn các số phức w = ( 3 + 4 i ) z ¯ + i + 5 là một đường tròn có bán kính bằng
A. 19
B. 20
C. 35
D. 4
Cho các số phức z thỏa mãn z = 7 . Tập hợp các điểm biểu diễn các số phức w = 3 + 4 i z ¯ + i + 5 là một đường tròn có bán kính bằng.
A. 19
B. 20
C. 35
D. 4
Cho số phức z thỏa mãn |z|=1. Biết tập hợp các điểm biểu diễn số phức w=(3-4i)z-1+2i là đường tròn tâm I, bán kính R. Tìm tọa độ tâm I và bán kính R của đường tròn đó
A. I(1;2); R= 5
B. I(1;-2); R=5
C. I(1;2); R=5
D. I(-1;2); R=5