Cho số phức z thỏa mãn 5 z ¯ + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a + b bằng
A. 13
B. -5
C. 9
D. 5
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Cho số phức z thỏa mãn 2 − 3 i z + 4 + i z ¯ + 1 + 3 i 2 = 0 . Gọi a,b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2a-3b bằng
A. 1.
B. 4.
C. 11.
D. -19.
Phần thực của số phức z = 2 + 3 i 200 có dạng a 2 + b 3 + c 6 + d với a, b, c, d là các số nguyên. Trong các số a, b, c, d có tất cả bao nhiêu số bằng 0
A. 3
B. 1
C. 4
D. 2
Cho số phức z=a+bi a , b ∈ R thỏa mãn z = 5 và z ( 2 + i ) ( 1 - 2 i ) là một số thực. Tính P = a + b .
A. P=5
B. P=7
C. P=8
D. P=4
Cho hai số phức z = a + bi ; a , b ∈ ℝ . Có điểm biểu diễn của số phức z nằm trong dải − 2 ; 2 (hình 1) điều kiện của a và b là: a ≥ 2 b ≥ 2 a ≤ − 2 b ≤ − 2 − 2 < a < 2 , b ∈ ℝ a , b ∈ − 2 ; 2
A. a ≥ 2 b ≥ 2
B. a ≤ − 2 b ≤ − 2
C. − 2 < a < 2 , b ∈ ℝ
D. a , b ∈ − 2 ; 2
Cho số phức z thỏa mãn 2 + i z + 2 1 + 2 i 1 + i = 7 + 8 i . Kí hiệu a, b lần lượt là phần thực và phần ảo của số phức w = z + 1 + i . Tính P = a 2 + b 2
A. P = 5
B. P = 7
C. P = 13
D. P = 25
Cho số phức z = a+bi(a,b ϵ ℝ) thỏa mãn |z|=5z và z(2+i)(1-2i) là một số thực. Tính giá trị P=|a|+|b|
A.P=8
B.P=4
C.P=5
D. P=7
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z + 2 + i − z 1 + i = 0 , z > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + b i ( a , b ∈ R ) . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2
B. 0
C. 3
D. 1