Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z + 2 + i − z 1 + i = 0 và z > 1. Tính P = a + b .
A. P = − 1.
B. P = − 5.
C. P = 3.
D. P = 7.
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z + 2 + i − z 1 + i = 0 , z > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5
Cho số phức z = a+bi(a,b ϵ ℝ) thỏa mãn |z|=5z và z(2+i)(1-2i) là một số thực. Tính giá trị P=|a|+|b|
A.P=8
B.P=4
C.P=5
D. P=7
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z − 1 z − i = 1 và z − 3 i z + i = 1 . Tính P = a + b.
A. P = 7
B. P = -1
C. P = 1
D. P = 2
Xét các số phức z = a + b i a , b ∈ ℝ thỏa mãn đồng thời hai điều kiện z = z ¯ + 4 - 3 i và z + 1 - i + z - 2 + 3 i đạt giá trị nhỏ nhất. Giá trị P = a + 2 b là:
A. P = - 252 50 .
B. P = - 41 5 .
C. P = - 61 10 .
D. P = - 18 5
Cho các số phức z 1 = − 3 i ; z 2 = 4 + i và z thỏa mãn z − i = 2. Biểu thức T = z − z 1 + 2 z − z 2 đạt giá trị nhỏ nhất khi z = a + b i a , b ∈ ℝ . Hiệu a − b bằng:
A. 3 − 6 13 17
B. 6 13 − 3 17
C. 3 + 6 13 17
D. − 3 + 6 13 17
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z - 2 - i = i z ¯ - 2 Khi biểu thức P = z - 3 - i + z + 2 - 3 i đạt giá trị nhỏ nhất thì a-b bằng
A. - 59 8
B. - 5 16
C. - 59 16
D. - 5 8
Xét số phức z = a + b i a , b ∈ ℝ thỏa mãn điều kiện z − 4 − 3 i = 5 . Tính P = a + b khi biểu thức z + 1 − 3 i + z − 1 + i đạt giá trị lớn nhất.
A. P = 10
B. P = 4
C. P = 6
D. P = 8