Số phức z = a + b i a , b ∈ ℝ thỏa mãn z − 2 = z và z + 1 z ¯ − i là số thực. Giá trị của biểu thức S = a+2b bằng bao nhiêu?
A. S = - 1
B. S = 1
C. S = 0
D. S = - 3
Cho số phức z = a + b i (a,b ÎR) thỏa mãn 2 ( z + 1 ) = 3 z + i ( 5 - i ) . Giá trị H = a + 2 b bằng bao nhiêu?
A. 1
B. -3
C. 3
D. -1
Cho số phức z=a+bi a , b ∈ R thỏa mãn z ( 2 i - 3 ) - 8 i z ¯ = - 16 - 15 i . Giá trị S = a + 3 b bằng bao nhiêu?
A. S=3
B. S=4
C. S=5
D. S=6
Xét các số phức z = a + b i thỏa mãn z - 3 - 2 i = 2 . Tính a-b biết biểu thức S = z + 1 - 2 i + 2 z - 2 - 5 i đạt giá trị nhỏ nhất.
A. - 3
B. 3
C. 4
D. 0
Cho số phức z = a + bi ( a , b ∈ ℕ ) thỏa mãn đồng thời hai điều kiện | z | = | z - 1 - i | và biểu thức A = | z - 2 + 2 i | + | z - 3 + i | đạt giá trị nhỏ nhất. Giá trị của biểu thức a + b bằng
A. -1.
B. 2.
C. -2.
D. 1.
Xét các số phức z = a + b i a , b ∈ R thỏa mãn |z-4-3i|=2. Khi |z+1-3i|+|z-1+i| đạt giá trị lớn nhất, giá trị của a – 2b bằng
A. 1
B. -2
C. - 5
D. -1
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn đồng thời hai điều kiện z = z ¯ - 1 - i và biểu thức A = z - 2 + 2 i + z - 3 + i đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. -1
B. 2
C. -2
D. 1
Cho các số phức z 1 = 1, z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng S = M + m
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn z + 1 + 2 i - ( 1 + i ) | z | = 0 và |z|>1. Tính giá trị của biểu thức P=a+b
A. P=3
B. P=7
C. P=-1
D. P=-5