Đặt 11...11 (n số 1) = t thì \(10^n=9t+1\)
S = 11...11 (2n số 1) - 88...88 (n số 8) + 1 = 11..11 (n số 1). 10n + 11...11 (n số 1) - 8t + 1 = t. (9t + 1) + t - 8t + 1 = 9t2 - 6t + 1 = (3t - 1)2 (là số chính phương)
Vậy S là số chính phương (đpcm)
Đặt 11...11 (n số 1) = t thì \(10^n=9t+1\)
S = 11...11 (2n số 1) - 88...88 (n số 8) + 1 = 11..11 (n số 1). 10n + 11...11 (n số 1) - 8t + 1 = t. (9t + 1) + t - 8t + 1 = 9t2 - 6t + 1 = (3t - 1)2 (là số chính phương)
Vậy S là số chính phương (đpcm)
Chứng minh rằng tổng S = 1+3+5+...+(2n+1) là số chính phương với mọi n là số tự nhiên
bài 1 : cho n là số tự nhiên lớn hơn 1 . Chứng minh rằng : n4+4n là hợp số
bài 2 : tìm số tự nhiên n sao cho 3n+55 là số chính phương
bài 3 : cho a+1 và 2a+1 ( n ( N ) đồng thời là hai số chính phương . Chứng minh rằng a chia hết cho 24
Chứng minh số sau đây là số chính phương:
C = 4444…44 + 2222...22 + 88888…88 + 7
2n chữ số 4 / n+1 chữ số 2 / n chữ số 8
Cho số tự nhiên n thỏa mãn n(n+1)+6 không chia hết cho 3. Chứng minh rằng: 2n2+n+8 không phải là số chính phương.
giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+6 không chia hết cho 3. chứng minh rằng 2n^2+n+8 không là số chính phương
Cho n là số nguyên dương, sao cho 2n +1. 3n+1 là số chính phương. Chứng minh rằng n chia hết cho 40
Cho A = 11...15 (n số 1); B = 11...19 (n số 1). Chứng minh rằng AB + 4 là một số chính phương
Cho n là số nguyên dương sao cho \(\frac{n^2-1}{3}\)là tích của hai số tự nhiên liên tiếp. Chứng minh rằng : 2n-1 là số chính phương và n là tổng hai số chính phương liên tiếp.
Cho n là số nguyên dương. Chứng minh rằng: 2n+1 và 3n+1 là các số chính phương thì 5n+3 không là số nguyên tố.