a: Xét ΔSME và ΔSEN có
góc SEM=góc SNE
góc MSE chung
=>ΔSME đồng dạng với ΔSEN
b: Xét (O) có
SE,SF là tiếp tuyến
nên SE=SF
mà OE=OF
nên OS là trung trực của EF
=>OS vuông góc EF
=>SH*SO=SE^2=SM*SN
a: Xét ΔSME và ΔSEN có
góc SEM=góc SNE
góc MSE chung
=>ΔSME đồng dạng với ΔSEN
b: Xét (O) có
SE,SF là tiếp tuyến
nên SE=SF
mà OE=OF
nên OS là trung trực của EF
=>OS vuông góc EF
=>SH*SO=SE^2=SM*SN
cho điểm A nằm ngoài đường tròn (O). Qua A kẻ tiếp tuyến AB và AC với (O), ( B,C là tiếp điểm). Kẻ cát tuyến AMN với (O), (M nằm giữa A và N)
a) Chứng minh AB2 = AM. AN
b) Gọi H là giao điểm của AO và BC. Chứng minh : AH.AO= AM. AN
c) Đoạn AO cắt (O) tại I. Chứng minh I là tâm đường tròn nội tiếp tam giác ABC
Cho điểm A nằm ngoài đường tròn (O). Qua A kẻ hai tiếp tuyến AB và AC với (O) (B, C là tiếp điểm). Kẻ cát tuyến AMN với (O) (M nằm giữa A và N)
a, Chứng minh A B 2 = A M . A N
b, Gọi H = AO ∈ BC. Chứng minh AH.AO = AM.AN
c, Đoạn thẳng AO cắt đường tròn (O) tại I. Chứng minh I là tâm đường tròn nội tiếp tam giác ABC
cho điểm A nằm ngoài đường tròn (O). Qua A kẻ tiếp tuyến AB và AC với (O), ( B,C là tiếp điểm). Kẻ cát tuyến AMN với (O), (M nằm giữa A và N)
a) Chứng minh AB2 = AM. AN
b) Gọi H là giao điểm của AO và BC. Chứng minh : AH.AO= AM. AN
c) Đoạn AO cắt (O) tại I. Chứng minh I là tâm đường tròn nội tiếp tam giác ABC
cho đường tròn (O) cho điểm S nằm ngoài đường tròn. Từ S kẻ tiếp tuyến SA và SA' và cát tuyến SBC tới (O) . Phân giác của góc BAC cắt BC ở D cắt đường tròn ở E. Gọi H là giao điểm OS và AA' và G là giao điểm OE và BS, F là giao điểm AA' với BC .Chứng minh:
a, tam giác SAD là tam giác cân
b, SF.SG = SO.SH
c, SA^2= SG.SF
Giúp tôi câu 3
Cho đường tròn (O), Điểm A nằm ngoài đường tròn (O). Kẻ các tiếp tuyến AB, AC và cát tuyến AED tới (O) ( B, C là các tiếp điểm, E nằm giữa A và D). Gọi H là giao điểm của AO và BC.
1) chứng minh tứ giác ABOC nội tiếp
2) Chứng minh AB2 = AE.AD và AE.AD = AH.AO
3) Gọi I là tâm đường tròn nội tiếp tam giác BCD. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ICD thuộc (O)
Giúp tôi câu 3
Cho đường tròn (O), Điểm A nằm ngoài đường tròn (O). Kẻ các tiếp tuyến AB, AC và cát tuyến AED tới (O) ( B, C là các tiếp điểm, E nằm giữa A và D). Gọi H là giao điểm của AO và BC.
1) chứng minh tứ giác ABOC nội tiếp
2) Chứng minh AB2 = AE.AD và AE.AD = AH.AO
3) Gọi I là tâm đường tròn nội tiếp tam giác BCD. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ICD thuộc (O)
Từ điểm M nằm ngoài đường tròn (O; R) sao cho OM = 2R. Kẻ hai tiếp tuyến MA và MB (A, B là tiếp điểm). Kẻ cát tuyến MCD đến đường tròn (O) (C nằm giữa M và D).
a/ Chứng minh tứ giác MAOB nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b/ Chứng minh MC. MD = 3R2
c/ OM cắt (O) tại F sao cho O nằm giữa M và F. Chứng minh tam giác AFB đều.
d/ Gọi E là giao điểm của FC và đường tròn (I). Xác định vị trí cát tuyến của MCD để SFBE đạt giá trị lớn nhất và tính giá trị đó theo R.
1) Cho đường tròn (0) (0 là tâm). Từ điểm S ở ngoài đường tròn (0) kẻ các tiếp tuyển SA và SB với (0) (A, B là các tiếp điểm). Kẻ cát tuyến SCD không đi qua tâm O (C nằm giữa S và D). Gọi I là trung điểm của CD.
a) Chứng minh các điểm S, A, I, O, B cùng nằm trên một đường tròn.
b) Chứng minh SI là đường phân giác của góc AIB.
c) Gọi M là giao điểm của hai đường thẳng SO và AB; N là giao điểm của hai đường thẳng SD và AB. Chứng minh MC.ND = NC.MD.
Từ điểm A ở bên ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).
b) Chứng minh OA vuông góc với BC tại H và OD^2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA
c) C/m tam giác ABD đồng dạng với tam giác AEB