Đặt an=1+2+3+4+5+...+n
=>an=\(\frac{n\left(n+1\right)}{2}\)
Ta có: Sn=(1+2+3+4+...+n)+(an+1)+(an+2)+(an+3)+...+(an+n)
=an+n.an+an
=an(n+2)
=\(\frac{n\left(n+1\right)}{2}\left(n+2\right)\)
=\(\frac{n\left(n+1\right)\left(n+2\right)}{2}\)
Vậy S100=\(\frac{100.101.102}{2}=515100\)