Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)
Vậy \(\left(P-S\right)^{2013}=0\)