Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yui Arayaki

\(Cho\) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-...+\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2015}\)

\(B=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2014}+\dfrac{1}{2015}\)

Tính (S - B)2016

Cuộc Sống
29 tháng 3 2018 lúc 18:36

Ta có:

*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)

\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0\)


Các câu hỏi tương tự
♥Jungkookie♥
Xem chi tiết
Trà My Kute
Xem chi tiết
cao minh thành
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
linh nguyen ngoc
Xem chi tiết
Đặng Nguyễn Linh Phương
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
♥Jungkookie♥
Xem chi tiết
Trần Bảo Ngọc
Xem chi tiết