Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
No Name

Cho S = 1 + 3 + 32 + 33 + … + 349

a) Chứng tỏ S chia hết cho 4.

b) Tìm chữ số tận cùng của S. 

tth_new
29 tháng 9 2018 lúc 10:17

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(=1.4+3^2.4+...+3^{48}.4\)

\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)

b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)

\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)

\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)

Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)

Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)

Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4

Trần Tiến Pro ✓
24 tháng 10 2018 lúc 19:38

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)

\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=1.4+3^2.4+...+3^{48}.4\)

\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)


Các câu hỏi tương tự
Thị Hồ Lê
Xem chi tiết
Đức Tú
Xem chi tiết
Dương Phương Thuỳ
Xem chi tiết
Clever leo
Xem chi tiết
Thiều Lê Đức
Xem chi tiết
Phạm Hoàng Nam
Xem chi tiết
Nguyễn Thị Cẩm Nhung
Xem chi tiết
hklbmldbj
Xem chi tiết
Võ Mai Trang
Xem chi tiết