Ta có : \(P=\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\) (ĐKXĐ : \(a\ge2\))
\(=\sqrt{\left(a-2\right)+4\sqrt{a-2}+4}+\sqrt{\left(a-2\right)-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
\(=\sqrt{a-2}+2+\left|\sqrt{a-2}-2\right|\)
Đến đây, ta xét :
Với \(\sqrt{a-2}-2\ge0\Rightarrow a\ge6\), ta có : \(P=\sqrt{a-2}+2+\sqrt{a-2}-2=2\sqrt{a-2}\)Với \(\sqrt{a-2}-2< 0\Rightarrow2\le a< 6\), ta có : \(P=\sqrt{a-2}+2+2-\sqrt{a-2}=4\)Vậy ta có \(P=\hept{\begin{cases}4\Leftrightarrow2\le a< 6\\2\sqrt{a-2}\Leftrightarrow a\ge6\end{cases}}\)