tìm x biết
a)\(x+2x+3x+4x+...+2015x=2016\times2017\)
b)\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1008}-1}{4}\)
c)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)
d)tìm x nguyên biết \(\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=2500\)
e) tìm x nguyên biết \(2004=\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+99x\right|+\left|x+1000\right|\)
1) Tính:
a) \(\frac{3}{5}+\left(-\frac{1}{4}\right)\)
b) \(\left(-\frac{5}{18}\right)\left(-\frac{9}{10}\right)\)
c) \(4\frac{3}{5}:\frac{2}{5}\)
2) Tìm x:
a)\(\frac{12}{x}=\frac{3}{4}\)
b) \(x:\left(\frac{-1}{3}\right)^3=\left(\frac{-1}{3}\right)^2\)
c) \(\frac{-11}{12}.x+0,25=\frac{5}{6}\)
d) \(\left(x-1\right)^5=-32\)
3) Cho |m| = -3, tìm m:
4) Các cạnh của một tam giác có số đo tỉ lệ với các số 3; 4; 5. Tính cạnh của tam giác biết chu vi của nó là 13,2 cm
b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(
Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)
Cần chứng minh
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)
Cho a,b,c>0; a+b+c=3/4. Tìm min
\(M=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
1. \(\frac{x^3-10x^2+25x}{x^2-5x}\)\(=0\) ( đkxđ: \(x\ne0;5\))
<=> \(\frac{x\left(x-5\right)^2}{x\left(x-5\right)}=0\)<=> \(x-5=0\)<=> vô no
2. \(A=\)\(\frac{2x^2-2}{x^3-x^2-4x+4}\)\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x-2\right)\left(x+2\right)}\) ( a, đkxđ: \(x\ne1;\pm2\))
b, \(A=0\)<=> \(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}=0\)<=> \(x=-1\)( TM) . Vậy \(A=0\Leftrightarrow x=-1\)
3. \(B=\frac{3x^2-12}{\left(x-3\right)\left(x^2+4x+4\right)}\)\(=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)^2}\) ( a, đkxđ: \(x\ne3,-2\))
\(b,B=0\Leftrightarrow\frac{3\left(x-2\right)}{\left(x-3\right)\left(x+2\right)}=0\Leftrightarrow x=2\left(tm\right)\). Vậy \(B=0\Leftrightarrow x=2\)
\(B=\frac{x^2+x+1}{x^2+2x+1}\)
\(x^2+x+1=bx^2+2xb+b\)
\(x^2\left(1-b\right)+x\left(1-2b\right)+\left(1-b\right)\)
chọn b để pt lớn hơn hoặc = 0 " tức denta =0
\(\Delta=\left(1-2b\right)^2-4\left(1-b\right)^2=0\)
giải nhanh b=3/4 , thay b=3/4 vòa
\(x^2\left(1-\frac{3}{4}\right)+x\left(1-\frac{6}{4}\right)+\left(1-\frac{3}{4}\right)\ge0\)" vì denta=0"
dấu = xảy ra khi x= +- căn 3 " tự giải pt " chúa chỉ làm thế
e,\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}=4-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=4-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1}-\frac{1}{7}\right)=4-\frac{6}{7}=3\frac{1}{7}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(x^2-3x=0\)